# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from dataclasses import dataclass @dataclass class train_config: model_name: str="PATH/to/Model" tokenizer_name: str=None enable_fsdp: bool=False # shards model parameters, optimizer states and gradients across DDP ranks low_cpu_fsdp: bool=False # saves cpu memory by loading pretrained model on rank0 only run_validation: bool=True batch_size_training: int=4 batching_strategy: str="packing" #alternative: padding context_length: int=4096 gradient_accumulation_steps: int=1 gradient_clipping: bool = False gradient_clipping_threshold: float = 1.0 num_epochs: int=3 max_train_step: int=0 max_eval_step: int=0 num_workers_dataloader: int=1 lr: float=1e-4 weight_decay: float=0.0 gamma: float= 0.85 # multiplicatively decay the learning rate by gamma after each epoch seed: int=42 use_fp16: bool=False mixed_precision: bool=True val_batch_size: int=1 dataset = "samsum_dataset" peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP) use_peft: bool=False # use parameter efficient fine tuning from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint output_dir: str = "PATH/to/save/PEFT/model" freeze_layers: bool = False num_freeze_layers: int = 1 freeze_LLM_only: bool = False # Freeze self-attention layers in the language_model. Vision model, multi_modal_projector, cross-attention will be fine-tuned quantization: str = None one_gpu: bool = False save_model: bool = True dist_checkpoint_root_folder: str="PATH/to/save/FSDP/model" # will be used if using FSDP dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP save_optimizer: bool=False # will be used if using FSDP use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels use_wandb: bool = False # Enable wandb for experient tracking save_metrics: bool = False # saves training metrics to a json file for later plotting flop_counter: bool = False # Enable flop counter to measure model throughput, can not be used with pytorch profiler at the same time. flop_counter_start: int = 3 # The step to start profiling, default is 3, which means after 3 steps of warmup stage, the profiler will start to count flops. use_profiler: bool = False # Enable pytorch profiler, can not be used with flop counter at the same time. profiler_dir: str = "PATH/to/save/profiler/results" # will be used if using profiler