# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 3 Community License Agreement.
import logging
import evaluate
import argparse
from config import load_config
import json
from langchain_openai import ChatOpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.utils import DistanceStrategy
from datetime import datetime
from langchain_community.document_loaders import DirectoryLoader
import re
import string
import pandas as pd
def generate_answers_model_only(model_name,question_list,api_url="http://localhost:8000/v1",key="EMPTY"):
# Use langchain to load the documents from data directory
# Load the RAFT model
llm = ChatOpenAI(
openai_api_key=key,
openai_api_base=api_url,
model_name=model_name,
temperature=0.0,
max_tokens=1000
)
all_tasks = [api_config['eval_prompt_template'].format(question=question) for question in question_list]
generated_answers = llm.batch(all_tasks)
generated_answers = [ item.content for item in generated_answers]
if len(generated_answers) == 0:
logging.error("No model answers generated. Please check the input context or model configuration in ",model_name)
return []
return clean_text_list(generated_answers)
def format_docs_raft(docs):
context = ""
for doc in docs:
context += "\n" + str(doc.page_content) + "\n"
return context
def build_retriever(api_config,embedding_model_name,retrieved_docs_num=5):
# Use langchain to load the documents from data directory
loader = DirectoryLoader(api_config['data_dir'])
docs = loader.load()
# Split the document into chunks with a specified chunk size
text_splitter = RecursiveCharacterTextSplitter(chunk_size=api_config["chunk_size"],chunk_overlap=int(api_config["chunk_size"] / 10),separators= ["----------","\n\n", "\n", " ", ""],strip_whitespace=True)
docs_processed = text_splitter.split_documents(docs)
# Remove duplicates
unique_texts = {}
docs_processed_unique = []
for doc in docs_processed:
if doc.page_content not in unique_texts:
unique_texts[doc.page_content] = True
docs_processed_unique.append(doc)
logging.info(f"Total number of docs_processed used by vectorstore: {len(docs_processed_unique)}")
# Store the document into a vector store with a specific embedding model
embedding_model = HuggingFaceEmbeddings(
model_name=embedding_model_name,
model_kwargs={"device": "cuda"},
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
)
vectorstore = FAISS.from_documents(docs_processed_unique, embedding_model, distance_strategy=DistanceStrategy.COSINE)
retriever = vectorstore.as_retriever(
search_kwargs={"k": retrieved_docs_num},
)
return retriever
def generate_answers_with_RAG(model_name, question_list,api_config,retriever,api_url_overwrite=None):
api_url = api_config['model_endpoint_url']
if api_url_overwrite:
api_url = api_url_overwrite
key = api_config['api_key']
# Load the RAFT model
llm = ChatOpenAI(
openai_api_key=key,
openai_api_base=api_url,
model_name=model_name,
temperature=0.0,
max_tokens=1000
)
all_tasks = []
for q in question_list:
# retrive the top K documents
retrieved_docs = retriever.invoke(q)
# format the documents into a string
documents = format_docs_raft(retrieved_docs)
# create a prompt
text = api_config["RAG_prompt_template"].format(context=documents,question=q)
all_tasks.append(text)
generated_answers = llm.batch(all_tasks)
generated_answers = [ item.content for item in generated_answers]
if len(generated_answers) == 0:
logging.error("No RAG answers generated. Please check the input context or model configuration in ",model_name)
return []
return clean_text_list(generated_answers)
def compute_rouge_score(generated : list, reference: list):
rouge_score = evaluate.load('rouge')
return rouge_score.compute(
predictions=generated,
references=reference,
use_stemmer=True,
use_aggregator=True
)
def clean_text_list(text_list):
result = []
for text in text_list:
# for raft model, the answer will started with
index = text.rfind("")
if index!= -1:
text = text[index:]
text = text.replace(":","")
text = text.replace("begin_quote","")
text = text.replace("end_quote","")
text = text.replace("##","")
text = text.strip()
result.append(text)
return result
def normalize_answer(s):
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def exact_match_score(prediction, ground_truth):
"""Computes EM score for a single prediction and ground truth answer."""
num_match = 0
assert len(prediction) == len(ground_truth), "Answer length does not match prediction length."
assert(len(ground_truth) > 0)
for idx, (pred,gold) in enumerate(zip(prediction, ground_truth)):
if (normalize_answer(pred) == normalize_answer(gold)):
num_match += 1
return num_match/len(ground_truth)
def compute_judge_score(questions: list, generated : list, reference: list, api_config,api_url="http://localhost:8001/v1",key="EMPTY"):
correct_num = 0
model_name = "meta-llama/Meta-Llama-3-70B-Instruct"
llm = ChatOpenAI(
openai_api_key=key,
openai_api_base=api_url,
model_name=model_name,
max_tokens=1000,
temperature=0.0)
all_tasks = []
for question,prediction,gold in zip(questions, generated,reference):
message = api_config['judge_prompt_template'].format(question=question,prediction=prediction,gold=gold)
all_tasks.append(message)
judge_responses = llm.batch(all_tasks)
judge_responses = ["YES" in item.content for item in judge_responses]
correct_num = sum(judge_responses)
return correct_num/len(questions),judge_responses
def score_single(api_config,generated,reference,questions, run_exact_match=True,run_rouge=True, run_llm_as_judge=True):
# set metric to default -1, means no metric is computed
metric = {
"Rouge_score": -1,
"LLM_judge_score": -1,
"Exact_match": -1
}
if run_rouge:
rouge_score = compute_rouge_score(generated,reference)
metric["Rouge_score"] = rouge_score
print("Rouge_score:",rouge_score)
if api_config["judge_endpoint_url"] and run_llm_as_judge:
api_url = api_config["judge_endpoint_url"]
LLM_judge_score,judge_responses = compute_judge_score(questions, generated, reference, api_config,api_url=api_url)
metric["LLM_judge_score"] = LLM_judge_score
metric["LLM_judge_responses"] = judge_responses
print(f"LLM_judge_score: {LLM_judge_score}")
if run_exact_match:
exact_match = exact_match_score(generated,reference)
print(f"Exact_match_percentage: {exact_match:.4f}")
metric["Exact_match"] = exact_match
return metric
def main(api_config):
# Since the eval set is small, we can run the eval without async functions
try:
api_url = api_config["model_endpoint_url"]
logging.info("Starting to generate answer given the eval set.")
questions,groud_truth = [],[]
if api_config["eval_file"].endswith(".parquet"):
eval_file = pd.read_parquet(api_config["eval_file"],filters=[('source', '=', 'pt_discuss_forum')])
for index, item in eval_file.iterrows():
questions.append(item["question"]+"\nDetails:\n"+item["context"])
groud_truth.append(item["answer"])
else:
with open(api_config["eval_file"]) as fp:
eval_file = json.load(fp)
for index, item in enumerate(eval_file):
questions.append(item["question"])
groud_truth.append(item["answer"])
generated_answers = {}
# build retriver
retriever = build_retriever(api_config,"sentence-transformers/multi-qa-mpnet-base-cos-v1",api_config["rag_topk"])
# Generate answers for 8B models
model_name = api_config["model_name"]
generated_answers[model_name] = generate_answers_model_only(model_name,questions,api_url)
generated_answers[model_name+"_RAG"] = generate_answers_with_RAG(model_name, questions,api_config,retriever)
print("Finished generating answers for ", model_name)
large_model_name = "meta-llama/Meta-Llama-3-70B-Instruct"
large_api_url = api_config["judge_endpoint_url"]
generated_answers["70B_Base"] = generate_answers_model_only(large_model_name,questions,large_api_url)
generated_answers["70B_RAG"] = generate_answers_with_RAG(large_model_name, questions,api_config,retriever,large_api_url)
print("Finished generating answers for ", large_model_name)
logging.info(f"Successfully generated {len(generated_answers[model_name+'_RAG'])} answers for all models.")
# for generate answer from each model, compute the score metric
all_metrics = []
output_file = api_config["output_log"]+str(datetime.now().strftime("%Y%m%d_%H%M%S"))
for model_name,model_answer in generated_answers.items():
if len(model_answer) != len(groud_truth):
print(f"The length of {model_name} answer is not equal to the length of ground truth.")
continue
metric = score_single(api_config,model_answer,groud_truth,questions)
print(f"The eval result for {model_name} is: {metric}")
with open(output_file,"a") as fp:
fp.write(f"Eval_result for {model_name} \n")
fp.write(f"Rouge_score: {metric['Rouge_score']} \n")
fp.write(f"Exact_match_percentage: {metric['Exact_match']} \n")
judge_responses = ["None"] * len(questions)
if api_config["judge_endpoint_url"]:
fp.write(f"LLM_judge_score: {metric['LLM_judge_score']} \n")
judge_responses = metric["LLM_judge_responses"]
all_metrics.append((model_name,metric['LLM_judge_score'],metric["LLM_judge_responses"]))
fp.write(f"QA details: \n")
for item in zip(questions,model_answer,groud_truth,judge_responses):
fp.write(f"question: {item[0]} \n")
fp.write(f"generated_answers: {item[1]} \n")
fp.write(f"groud_truth: {item[2]} \n")
fp.write(f"LLM_judge_response: {item[3]} \n")
fp.write("\n")
fp.write("\n------------------------------------\n")
# Now we want to take a closer look at the questions that are not answered the same by all the models.
judge_zip = list(zip(*[item[-1] for item in all_metrics]))
model_names = [item[0] for item in all_metrics]
with open(output_file,"a") as fp:
for item in all_metrics:
fp.write(f"Model_Name: {item[0]}, LLM_SCORE: {item[1]} \n")
for idx,item in enumerate(judge_zip):
# if all the responses are "YES", then we skip this question
if sum(item) == len(item):
continue
else:
fp.write(f"Comparing interested question: {questions[idx]} \n")
fp.write(f"groud_truth: {groud_truth[idx]} \n")
for i in range(len(model_names)):
fp.write(f"{item[i]} {model_names[i]}_answers: {generated_answers[model_names[i]][idx]} \n")
fp.write("------------------------\n")
fp.write(json.dumps(all_metrics))
print("Finished evaluating the model.")
logging.info(f"Eval successfully, the eval result is saved to {api_config['output_log']}.")
# Saving the eval result to a log file
except Exception as e:
logging.error(f"An unexpected error occurred during the process: {e}",exc_info=True)
def parse_arguments():
# Define command line arguments for the script
parser = argparse.ArgumentParser(
description="Generate question/answer pairs from documentation."
)
parser.add_argument(
"-m", "--model_name",
default=None,
help="Provide the model_name to use for evaluation. If not specified, the model_path in eval_config.yaml will be used."
)
parser.add_argument(
"-c", "--config_path",
default="raft_eval_config.yaml",
help="Set the configuration file path that has system prompt along with language, evalset path."
)
parser.add_argument(
"-d", "--data_dir",
default=None,
help="Provide the data folder path to build RAG for evaluation. If not specified, the data_dir in eval_config.yaml will be used."
)
parser.add_argument(
"-u", "--model_endpoint_url",
default="http://localhost:8000/v1",
type=str,
help="The raft model endpoint url for eval."
)
parser.add_argument(
"-j", "--judge_endpoint_url",
default=None,
type=str,
help="The large model endpoint url for judge as LLM."
)
parser.add_argument(
"-o", "--output_log",
default="./eval_result",
help="save the eval result to a log file. Default is eval_result[timestamp].log"
)
parser.add_argument(
"-k", "--api_key",
default="EMPTY",
type=str,
help="LLM API key for generating question/answer pairs."
)
parser.add_argument(
"-r", "--rag_topk",
default=5,
type=int,
help="set the number of top k documents the RAG needs to retrive."
)
parser.add_argument("--chunk_size", type=int, default=1000, help="The character size of each chunk used in RAG")
return parser.parse_args()
if __name__ == "__main__":
logging.info("Initializing the process and loading configuration...")
args = parse_arguments()
api_config = load_config(args.config_path)
api_config["model_endpoint_url"] = args.model_endpoint_url
if args.data_dir:
api_config["data_dir"] = args.data_dir
if args.model_name:
api_config["model_name"] = args.model_name
api_config["judge_endpoint_url"] = args.judge_endpoint_url
api_config["output_log"] = args.output_log
api_config["api_key"] = args.api_key
api_config["chunk_size"] = args.chunk_size
api_config["rag_topk"] = args.rag_topk
if api_config["judge_endpoint_url"]:
logging.info(f"The judge model url is: '{args.judge_endpoint_url}'.")
main(api_config)