## Fine-Tuning Tutorial for Llama4 Models with torchtune This tutorial shows how to perform fine-tuning on Llama4 models using [torchtune](https://github.com/pytorch/torchtune?tab=readme-ov-file). ### Prerequisites 0. Llama 4 models are sizeable, so we recommend you to use 8 x H100 with 80GB RAM available to run fine tuning. If you are using GPU's with 40GB RAM, please consider enabling CPU memory offloading. If you are leasing a VM from a cloud provider to do the fine tuning, ensure you have NVIDIA drivers installed: wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run sudo sh cuda_12.1.0_530.30.02_linux.run Verify GPUs with nvidia-smi command. 1. We need to use torchtune to perform LoRA fine-tuning. Now let's set up the environment and install pytorch nightly build. Llama4 LORA fine-tuning also requires build from source. a. Create a Python 3.10 environment (recommended): ```bash conda create -n py310 python=3.10 -y conda activate py310 ``` b. Install PyTorch nightly and TorchTune: ```bash pip install --force-reinstall --pre torch torchvision torchao --index-url https://download.pytorch.org/whl/nightly/cu126 git clone https://github.com/pytorch/torchtune.git cd torchtune git checkout 5d51c25cedfb6ba7b00e03cb2fef4f9cdb7baebd pip install -e . ``` c. Depending on your setup environment, you may also need to install these packages as well: ```bash pip install importlib_metadata pip install torchvision pip install torchao ``` 2. We also need Hugging Face access token (HF_TOKEN) for model download, please follow the instructions [here](https://huggingface.co/docs/hub/security-tokens) to get your own token. You will also need to gain model access to Llama4 models from [here](https://huggingface.co/collections/meta-llama/llama-4-67f0c30d9fe03840bc9d0164) ### Steps 1. **Download Llama4 Weights** We will use `meta-llama/Llama-4-Scout-17B-16E-Instruct` as an example here. Replace with your Hugging Face token: ```bash tune download meta-llama/Llama-4-Scout-17B-16E-Instruct --output-dir /tmp/Llama-4-Scout-17B-16E-Instruct --hf-token $HF_TOKEN ``` Alternatively, you can use `huggingface-cli` to login then download the model weights. ```bash huggingface-cli login --token $HF_TOKEN tune download meta-llama/Llama-4-Scout-17B-16E-Instruct --output-dir /tmp/Llama-4-Scout-17B-16E-Instruct ``` This retrieves the model weights, tokenizer from Hugging Face. 2. **Run LoRA Fine-Tuning for Llama4** To run LoRA fine-tuning, use the following command: ```bash tune run --nproc_per_node 8 lora_finetune_distributed --config llama4/scout_17B_16E_lora ``` This will run LoRA fine-tuning on Llama4 model with 8 GPUs. The config llama4/scout_17B_16E_lora is a config file that specifies the model, tokenizer, and training parameters. This command will also download the `alpaca_dataset` as selected in the [config file](https://github.com/pytorch/torchtune/blob/main/recipes/configs/llama4/scout_17B_16E_full.yaml#L46). Please refer to the [Datasets section](https://pytorch.org/torchtune/main/basics/datasets_overview.html#datasets-overview) for more details. You can customize the training process by adding command line overrides. For example, to optimize training efficiency and memory usage: ```bash tune run --nproc_per_node 8 lora_finetune_distributed --config llama4/scout_17B_16E_lora batch_size=4 dataset.packed=True tokenizer.max_seq_len=2048 fsdp_cpu_offload=True ``` These arguments control: * `batch_size=4`: Sets the number of examples processed in each training step * `dataset.packed=True`: Packs multiple sequences into a single example to maximize GPU utilization * `tokenizer.max_seq_len=2048`: Sets maximum sequence length to 2048 tokens * `fsdp_cpu_offload=True`: Enables CPU memory offloading to prevent out-of-memory errors but slows down fine tuning process significantly (especially important if you are using GPUs with 40GB) Please check the [this yaml](https://github.com/pytorch/torchtune/blob/main/recipes/configs/llama4/scout_17B_16E_lora.yaml) for all the possible configs to override. To learn more about the YAML config, please refer to the [YAML config documentation](https://pytorch.org/torchtune/stable/deep_dives/configs.html#config-tutorial-label) 3. **Run Full Parameter Fine-Tuning for Llama4** To run full parameter fine-tuning, use the following command: ```bash tune run --nproc_per_node 8 full_finetune_distributed --config llama4/scout_17B_16E_full batch_size=4 dataset.packed=True tokenizer.max_seq_len=2048 ``` This command will run a full fine-tuning on a single node as Torchtune by default use CPU offload to avoid Out-of-Memory (OOM) error. Please check the [this yaml](https://github.com/pytorch/torchtune/blob/main/recipes/configs/llama4/scout_17B_16E_full.yaml) for all the possible configs to override. Alternatively, if you want to run with multi-node to avoid possible slowness from CPU offloading, please modify this [slurm script](https://github.com/pytorch/torchtune/blob/0ddd4b93c83de60656fb3db738228b06531f7c1e/recipes/full_finetune_multinode.slurm#L39).