123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 3 Community License Agreement.
- # Assuming result_average_token is a constant, use UPPER_CASE for its name to follow Python conventions
- AVERAGE_TOKENS_PER_RESULT = 100
- def get_token_limit_for_model(model: str) -> int:
- """Returns the token limit for a given model."""
- if model == "llama-2-13b-chat" or model == "llama-2-70b-chat":
- return 4096
- else:
- return 8192
- def calculate_num_tokens_for_message(encoded_text) -> int:
- """Calculates the number of tokens used by a message."""
- # Added 3 to account for priming with assistant's reply, as per original comment
- return len(encoded_text) + 3
- def split_text_into_chunks(context: dict, text: str, tokenizer) -> list[str]:
- """Splits a long text into substrings based on token length constraints, adjusted for question generation."""
- # Adjusted approach to calculate max tokens available for text chunks
- encoded_text = tokenizer(text, return_tensors="pt", padding=True)["input_ids"]
- encoded_text = encoded_text.squeeze()
- model_token_limit = get_token_limit_for_model(context["model"])
- tokens_for_questions = calculate_num_tokens_for_message(encoded_text)
- estimated_tokens_per_question = AVERAGE_TOKENS_PER_RESULT
- estimated_total_question_tokens = estimated_tokens_per_question * context["total_questions"]
- # Ensure there's a reasonable minimum chunk size
- max_tokens_for_text = max(model_token_limit - tokens_for_questions - estimated_total_question_tokens, model_token_limit // 10)
- chunks, current_chunk = [], []
- print(f"Splitting text into chunks of {max_tokens_for_text} tokens, encoded_text {len(encoded_text)}", flush=True)
- for token in encoded_text:
- if len(current_chunk) >= max_tokens_for_text:
- chunks.append(tokenizer.decode(current_chunk).strip())
- current_chunk = []
- else:
- current_chunk.append(token)
- if current_chunk:
- chunks.append(tokenizer.decode(current_chunk).strip())
- print(f"Number of chunks in the processed text: {len(chunks)}", flush=True)
- return chunks
|