| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 3 Community License Agreement.
 
- import logging
 
- import evaluate
 
- import argparse
 
- from config import load_config
 
- import json
 
- from langchain_openai import ChatOpenAI
 
- from langchain_community.embeddings import HuggingFaceEmbeddings
 
- from langchain_community.vectorstores import FAISS
 
- from langchain.text_splitter import RecursiveCharacterTextSplitter
 
- from langchain_community.vectorstores.utils import DistanceStrategy
 
- from datetime import datetime
 
- from langchain_community.document_loaders import DirectoryLoader
 
- import re
 
- import string
 
- import pandas as pd 
 
- def generate_answers_model_only(model_name,question_list,api_url="http://localhost:8000/v1",key="EMPTY"):
 
-         # Use langchain to load the documents from data directory
 
-     # Load the RAFT model
 
-     llm = ChatOpenAI(
 
-         openai_api_key=key,
 
-         openai_api_base=api_url,
 
-         model_name=model_name,
 
-         temperature=0.0,
 
-         max_tokens=1000
 
-         )
 
-     all_tasks = [api_config['eval_prompt_template'].format(question=question) for question in question_list]
 
-     generated_answers = llm.batch(all_tasks)
 
-     generated_answers = [ item.content for item in generated_answers]
 
-     if len(generated_answers) == 0:
 
-         logging.error("No model answers generated. Please check the input context or model configuration in ",model_name)
 
-         return []
 
-     return clean_text_list(generated_answers)
 
- def format_docs_raft(docs):
 
-     context = ""
 
-     for doc in docs:
 
-         context += "\n<DOCUMENT>" + str(doc.page_content) + "</DOCUMENT>\n"
 
-     return context
 
- def build_retriever(api_config,embedding_model_name,retrieved_docs_num=5):
 
-     # Use langchain to load the documents from data directory
 
-     loader = DirectoryLoader(api_config['data_dir'])
 
-     docs = loader.load()
 
-     # Split the document into chunks with a specified chunk size
 
-     text_splitter = RecursiveCharacterTextSplitter(chunk_size=api_config["chunk_size"],chunk_overlap=int(api_config["chunk_size"] / 10),separators= ["----------","\n\n", "\n", " ", ""],strip_whitespace=True)
 
-     docs_processed = text_splitter.split_documents(docs)
 
-     # Remove duplicates
 
-     unique_texts = {}
 
-     docs_processed_unique = []
 
-     for doc in docs_processed:
 
-         if doc.page_content not in unique_texts:
 
-             unique_texts[doc.page_content] = True
 
-             docs_processed_unique.append(doc)
 
-     logging.info(f"Total number of docs_processed used by vectorstore: {len(docs_processed_unique)}")
 
-     # Store the document into a vector store with a specific embedding model
 
-     embedding_model = HuggingFaceEmbeddings(
 
-         model_name=embedding_model_name,
 
-         model_kwargs={"device": "cuda"},
 
-         encode_kwargs={"normalize_embeddings": True},  # Set `True` for cosine similarity
 
-     )
 
-     vectorstore = FAISS.from_documents(docs_processed_unique, embedding_model, distance_strategy=DistanceStrategy.COSINE)
 
-     retriever = vectorstore.as_retriever(
 
-         search_kwargs={"k": retrieved_docs_num},
 
-     )
 
-     return retriever
 
- def generate_answers_with_RAG(model_name, question_list,api_config,retriever,api_url_overwrite=None):
 
-     api_url = api_config['model_endpoint_url']
 
-     if api_url_overwrite:
 
-         api_url = api_url_overwrite
 
-     key = api_config['api_key']
 
-     # Load the RAFT model
 
-     llm = ChatOpenAI(
 
-         openai_api_key=key,
 
-         openai_api_base=api_url,
 
-         model_name=model_name,
 
-         temperature=0.0,
 
-         max_tokens=1000
 
-         )
 
-     all_tasks = []
 
-     for q in question_list:
 
-         # retrive the top K documents
 
-         retrieved_docs = retriever.invoke(q)        
 
-         # format the documents into a string
 
-         documents = format_docs_raft(retrieved_docs)
 
-         # create a prompt
 
-         text = api_config["RAG_prompt_template"].format(context=documents,question=q)
 
-         all_tasks.append(text)
 
-     generated_answers = llm.batch(all_tasks)
 
-     generated_answers = [ item.content for item in generated_answers]
 
-     if len(generated_answers) == 0:
 
-         logging.error("No RAG answers generated. Please check the input context or model configuration in ",model_name)
 
-         return []
 
-     return clean_text_list(generated_answers)
 
- def compute_rouge_score(generated : list, reference: list):
 
-     rouge_score = evaluate.load('rouge')
 
-     return rouge_score.compute(
 
-         predictions=generated,
 
-         references=reference,
 
-         use_stemmer=True,
 
-         use_aggregator=True
 
-     )
 
- def clean_text_list(text_list):
 
-     result = []
 
-     for text in text_list:
 
-         # for raft model, the answer will started with <ANSWER>
 
-         index = text.rfind("<ANSWER>")
 
-         if index!= -1:
 
-             text = text[index:]
 
-             text = text.replace("</ANSWER>:","")
 
-         text = text.replace("begin_quote","")
 
-         text = text.replace("end_quote","")
 
-         text = text.replace("##","")
 
-         text = text.strip()
 
-         result.append(text)
 
-     return result
 
- def normalize_answer(s):
 
-     def remove_articles(text):
 
-         return re.sub(r'\b(a|an|the)\b', ' ', text)
 
-     def white_space_fix(text):
 
-         return ' '.join(text.split())
 
-     def remove_punc(text):
 
-         exclude = set(string.punctuation)
 
-         return ''.join(ch for ch in text if ch not in exclude)
 
-     def lower(text):
 
-         return text.lower()
 
-     return white_space_fix(remove_articles(remove_punc(lower(s))))
 
- def exact_match_score(prediction, ground_truth):
 
-     """Computes EM score for a single prediction and ground truth answer."""
 
-     num_match = 0
 
-     assert len(prediction) == len(ground_truth), "Answer length does not match prediction length."
 
-     assert(len(ground_truth) > 0)
 
-     for idx, (pred,gold) in enumerate(zip(prediction, ground_truth)):
 
-         if (normalize_answer(pred) == normalize_answer(gold)):
 
-             num_match += 1
 
-     return num_match/len(ground_truth)
 
- def compute_judge_score(questions: list, generated : list, reference: list, api_config,api_url="http://localhost:8001/v1",key="EMPTY"):
 
-     correct_num = 0
 
-     model_name = "meta-llama/Meta-Llama-3-70B-Instruct"
 
-     llm = ChatOpenAI(
 
-         openai_api_key=key,
 
-         openai_api_base=api_url,
 
-         model_name=model_name,
 
-         max_tokens=1000,
 
-         temperature=0.0)
 
-     all_tasks = []
 
-     for question,prediction,gold in zip(questions, generated,reference):
 
-         message = api_config['judge_prompt_template'].format(question=question,prediction=prediction,gold=gold)
 
-         all_tasks.append(message)
 
-     judge_responses = llm.batch(all_tasks)
 
-     judge_responses = ["YES" in item.content for item in judge_responses]
 
-     correct_num = sum(judge_responses)
 
-     return correct_num/len(questions),judge_responses
 
- def score_single(api_config,generated,reference,questions, run_exact_match=True,run_rouge=True, run_llm_as_judge=True):
 
-     # set metric to default -1, means no metric is computed
 
-     metric = {
 
-         "Rouge_score": -1,
 
-         "LLM_judge_score": -1,
 
-         "Exact_match": -1
 
-     }
 
-     if run_rouge:
 
-         rouge_score = compute_rouge_score(generated,reference)
 
-         metric["Rouge_score"] = rouge_score
 
-         print("Rouge_score:",rouge_score)
 
-     if api_config["judge_endpoint_url"] and run_llm_as_judge:
 
-         api_url = api_config["judge_endpoint_url"]
 
-         LLM_judge_score,judge_responses = compute_judge_score(questions, generated, reference, api_config,api_url=api_url)
 
-         metric["LLM_judge_score"] = LLM_judge_score
 
-         metric["LLM_judge_responses"] = judge_responses
 
-         print(f"LLM_judge_score: {LLM_judge_score}")
 
-     if run_exact_match:
 
-         exact_match = exact_match_score(generated,reference)
 
-         print(f"Exact_match_percentage: {exact_match:.4f}")
 
-         metric["Exact_match"] = exact_match
 
-     return metric
 
- def main(api_config):
 
-     # Since the eval set is small, we can run the eval without async functions
 
-     try:
 
-         api_url = api_config["model_endpoint_url"]
 
-         logging.info("Starting to generate answer given the eval set.")
 
-         questions,groud_truth = [],[]
 
-         if api_config["eval_file"].endswith(".parquet"):
 
-             eval_file = pd.read_parquet(api_config["eval_file"],filters=[('source', '=', 'pt_discuss_forum')])
 
-             for index, item in eval_file.iterrows():
 
-                 questions.append(item["question"]+"\nDetails:\n"+item["context"])
 
-                 groud_truth.append(item["answer"])
 
-         else:
 
-             with open(api_config["eval_file"]) as fp:
 
-                 eval_file = json.load(fp)
 
-                 for index, item in enumerate(eval_file):
 
-                     questions.append(item["question"])
 
-                     groud_truth.append(item["answer"])
 
-         generated_answers = {}            
 
-         # build retriver
 
-         retriever = build_retriever(api_config,"sentence-transformers/multi-qa-mpnet-base-cos-v1",api_config["rag_topk"])
 
-         # Generate answers for 8B models
 
-         model_name = api_config["model_name"]
 
-         generated_answers[model_name] = generate_answers_model_only(model_name,questions,api_url)
 
-         generated_answers[model_name+"_RAG"] = generate_answers_with_RAG(model_name, questions,api_config,retriever)
 
-         print("Finished generating answers for ", model_name)
 
-         large_model_name = "meta-llama/Meta-Llama-3-70B-Instruct"
 
-         large_api_url = api_config["judge_endpoint_url"]
 
-         generated_answers["70B_Base"] = generate_answers_model_only(large_model_name,questions,large_api_url)
 
-         generated_answers["70B_RAG"] = generate_answers_with_RAG(large_model_name, questions,api_config,retriever,large_api_url)
 
-         print("Finished generating answers for ", large_model_name)
 
-         logging.info(f"Successfully generated {len(generated_answers[model_name+'_RAG'])} answers for all models.")
 
-         # for generate answer from each model, compute the score metric
 
-         all_metrics = []
 
-         output_file = api_config["output_log"]+str(datetime.now().strftime("%Y%m%d_%H%M%S"))
 
-         for model_name,model_answer in generated_answers.items():
 
-             if len(model_answer) != len(groud_truth):
 
-                 print(f"The length of {model_name} answer is not equal to the length of ground truth.")
 
-                 continue
 
-             metric = score_single(api_config,model_answer,groud_truth,questions)
 
-             print(f"The eval result for {model_name} is: {metric}")
 
-             with open(output_file,"a") as fp:
 
-                 fp.write(f"Eval_result for {model_name} \n")
 
-                 fp.write(f"Rouge_score: {metric['Rouge_score']} \n")
 
-                 fp.write(f"Exact_match_percentage: {metric['Exact_match']} \n")
 
-                 judge_responses = ["None"] * len(questions)
 
-                 if api_config["judge_endpoint_url"]:
 
-                     fp.write(f"LLM_judge_score: {metric['LLM_judge_score']} \n")
 
-                     judge_responses = metric["LLM_judge_responses"]
 
-                     all_metrics.append((model_name,metric['LLM_judge_score'],metric["LLM_judge_responses"]))
 
-                 fp.write(f"QA details: \n")
 
-                 for item in zip(questions,model_answer,groud_truth,judge_responses):
 
-                     fp.write(f"question: {item[0]} \n")
 
-                     fp.write(f"generated_answers: {item[1]} \n")
 
-                     fp.write(f"groud_truth: {item[2]} \n")
 
-                     fp.write(f"LLM_judge_response: {item[3]} \n")
 
-                     fp.write("\n")
 
-                 fp.write("\n------------------------------------\n")
 
-         # Now we want to take a closer look at the questions that are not answered the same by all the models.
 
-         judge_zip = list(zip(*[item[-1] for item in all_metrics]))
 
-         model_names = [item[0] for item in all_metrics]
 
-         with open(output_file,"a") as fp:
 
-             for item in all_metrics:
 
-                 fp.write(f"Model_Name: {item[0]}, LLM_SCORE: {item[1]} \n")
 
-             for idx,item in enumerate(judge_zip):
 
-                 # if all the responses are "YES", then we skip this question
 
-                 if sum(item) == len(item):
 
-                     continue 
 
-                 else:
 
-                     fp.write(f"Comparing interested question: {questions[idx]} \n")
 
-                     fp.write(f"groud_truth: {groud_truth[idx]} \n")
 
-                     for i in range(len(model_names)):
 
-                         fp.write(f"{item[i]} {model_names[i]}_answers: {generated_answers[model_names[i]][idx]} \n")
 
-                     fp.write("------------------------\n")
 
-             fp.write(json.dumps(all_metrics))
 
-         print("Finished evaluating the model.")
 
-         logging.info(f"Eval successfully, the eval result is saved to {api_config['output_log']}.")
 
-         # Saving the eval result to a log file
 
-     except Exception as e:
 
-         logging.error(f"An unexpected error occurred during the process: {e}",exc_info=True)
 
- def parse_arguments():
 
-     # Define command line arguments for the script
 
-     parser = argparse.ArgumentParser(
 
-         description="Generate question/answer pairs from documentation."
 
-     )
 
-     parser.add_argument(
 
-         "-m", "--model_name",
 
-         default=None,
 
-         help="Provide the model_name to use for evaluation. If not specified, the model_path in eval_config.yaml will be used."
 
-     )
 
-     parser.add_argument(
 
-         "-c", "--config_path",
 
-         default="raft_eval_config.yaml",
 
-         help="Set the configuration file path that has system prompt along with language, evalset path."
 
-     )
 
-     parser.add_argument(
 
-         "-d", "--data_dir",
 
-         default=None,
 
-         help="Provide the data folder path to build RAG for evaluation. If not specified, the data_dir in eval_config.yaml will be used."
 
-     )
 
-     parser.add_argument(
 
-         "-u", "--model_endpoint_url",
 
-         default="http://localhost:8000/v1",
 
-         type=str,
 
-         help="The raft model endpoint url for eval."
 
-     )
 
-     parser.add_argument(
 
-         "-j", "--judge_endpoint_url",
 
-         default=None,
 
-         type=str,
 
-         help="The large model endpoint url for judge as LLM."
 
-     )
 
-     parser.add_argument(
 
-         "-o", "--output_log",
 
-         default="./eval_result",
 
-         help="save the eval result to a log file. Default is eval_result[timestamp].log"
 
-     )
 
-     parser.add_argument(
 
-         "-k", "--api_key",
 
-         default="EMPTY",
 
-         type=str,
 
-         help="LLM API key for generating question/answer pairs."
 
-     )
 
-     parser.add_argument(
 
-         "-r", "--rag_topk",
 
-         default=5,
 
-         type=int,
 
-         help="set the number of top k documents the RAG needs to retrive."
 
-     )
 
-     parser.add_argument("--chunk_size", type=int, default=1000, help="The character size of each chunk used in RAG")
 
-     return parser.parse_args()
 
- if __name__ == "__main__":
 
-     logging.info("Initializing the process and loading configuration...")
 
-     args = parse_arguments()
 
-     api_config = load_config(args.config_path)
 
-     api_config["model_endpoint_url"] = args.model_endpoint_url
 
-     if args.data_dir:
 
-         api_config["data_dir"] = args.data_dir
 
-     if args.model_name:
 
-         api_config["model_name"] = args.model_name
 
-     api_config["judge_endpoint_url"] = args.judge_endpoint_url
 
-     api_config["output_log"] = args.output_log
 
-     api_config["api_key"] = args.api_key
 
-     api_config["chunk_size"] = args.chunk_size
 
-     api_config["rag_topk"] = args.rag_topk
 
-     if api_config["judge_endpoint_url"]:
 
-         logging.info(f"The judge model url is: '{args.judge_endpoint_url}'.")
 
-     main(api_config)
 
 
  |