123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 3 Community License Agreement.
- import copy
- import itertools
- import torch
- from datasets import load_dataset
- # check system prompt token seq or user prompt token seq is in the current token list
- def check_header(targets, seq):
- for i in range(len(seq) - 3):
- if seq[i : i + 3] in targets:
- return True
- return False
- def replace_target(target, seq):
- for i in range(len(seq) - 3):
- if seq[i : i + 3] == target:
- seq[i], seq[i + 1], seq[i + 2] = -100, -100, -100
- return seq
- def tokenize_dialogs(dialogs, images, processor):
- text_prompt = processor.apply_chat_template(dialogs)
- text_prompt = [prompt.replace('<|begin_of_text|>','') for prompt in text_prompt]
- batch = processor(
- images=images,
- text=text_prompt,
- padding=True,
- return_tensors="pt",
- )
- label_list = []
- for i in range(len(batch["input_ids"])):
- dialog_tokens = batch["input_ids"][i].tolist()
- labels = copy.copy(dialog_tokens)
- eot_indices = [i for i, n in enumerate(labels) if n == 128009]
- last_idx = 0
- # system prompt header "<|start_header_id|>system<|end_header_id|>" has been tokenized to [128006, 9125, 128007]
- # user prompt header "<|start_header_id|>user<|end_header_id|>" has been tokenized to [128006, 882, 128007]
- prompt_header_seqs = [[128006, 9125, 128007], [128006, 882, 128007]]
- for n, idx in enumerate(eot_indices):
- current_seq = labels[last_idx : idx + 1]
- if check_header(prompt_header_seqs, current_seq):
- # found prompt header, indicating that this seq should be masked
- labels[last_idx : idx + 1] = [-100] * (idx - last_idx + 1)
- else:
- last_idx = idx + 1
- # Mask all the assistant header prompt <|start_header_id|>assistant<|end_header_id|>, which has been tokenized to [128006, 78191, 128007]
- assistant_header_seq = [128006, 78191, 128007]
- labels = replace_target(assistant_header_seq, labels)
- # Mask the padding token and image token 128256
- for i in range(len(labels)):
- if (
- labels[i] == processor.tokenizer.pad_token_id or labels[i] == 128256
- ): # 128256 is image token index
- labels[i] = -100
- label_list.append(labels)
- batch["labels"] = torch.tensor(label_list)
- return batch
- def get_custom_dataset(dataset_config, processor, split, split_ratio=0.9):
- # load_dataset will return DatasetDict that contains all the data in the train set
- dataset_dict = load_dataset("HuggingFaceM4/the_cauldron", name="ocrvqa")
- dataset = dataset_dict["train"]
- # Comment out the following line to use the full dataset, for quick testing only use 2000 samples
- dataset = dataset.select(range(2000))
- dataset = dataset.train_test_split(
- test_size=1 - split_ratio, shuffle=True, seed=42
- )[split]
- return dataset
- class OCRVQADataCollator:
- def __init__(self, processor):
- self.processor = processor
- self.processor.tokenizer.padding_side = (
- "right" # during training, one always uses padding on the right
- )
- def __call__(self, samples):
- dialogs, images = [], []
- for sample in samples:
- image_list, sample_list = sample["images"], sample["texts"]
- if len(image_list) > 1:
- raise ValueError("Only support one image per sample")
- image = image_list[0].convert("RGB") # only use the first image
- dialog = []
- for sample_dict in sample_list:
- if not dialog:
- # only append image to the first sentence
- dialog += [
- {
- "role": "user",
- "content": [
- {"type": "image"},
- {"type": "text", "text": sample_dict["user"].strip()},
- ],
- },
- {
- "role": "assistant",
- "content": [
- {
- "type": "text",
- "text": sample_dict["assistant"].strip(),
- }
- ],
- },
- ]
- else:
- dialog += [
- {
- "role": "user",
- "content": [
- {"type": "text", "text": sample_dict["user"].strip()}
- ],
- },
- {
- "role": "assistant",
- "content": [
- {
- "type": "text",
- "text": sample_dict["assistant"].strip(),
- }
- ],
- },
- ]
- dialogs.append(dialog)
- images.append([image])
- return tokenize_dialogs(dialogs, images, self.processor)
- def get_data_collator(processor):
- return OCRVQADataCollator(processor)
|