1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 3 Community License Agreement.
- import copy
- from datasets import load_dataset
- import itertools
- # check system prompt token seq or user prompt token seq is in the current token list
- def check_header(targets,seq):
- for i in range(len(seq)-3):
- if seq[i:i+3] in targets:
- return True
- return False
- def replace_target(target,seq):
- for i in range(len(seq)-3):
- if seq[i:i+3] == target:
- seq[i],seq[i+1],seq[i+2] = -100,-100,-100
- return seq
- def tokenize_dialog(dialog, tokenizer):
- # If vocab size is above 128000, use the chat template to generate the tokens as it is from Llama 3 family models
- if tokenizer.vocab_size >= 128000:
- dialog_tokens = tokenizer.apply_chat_template(dialog)
- eot_indices = [i for i,n in enumerate(dialog_tokens) if n == 128009]
- labels = copy.copy(dialog_tokens)
- last_idx = 0
- # system prompt header "<|start_header_id|>system<|end_header_id|>" has been tokenized to [128006, 9125, 128007]
- # user prompt header "<|start_header_id|>user<|end_header_id|>" has been tokenized to [128006, 882, 128007]
- prompt_header_seqs = [[128006, 9125, 128007],[128006, 882, 128007]]
- for n, idx in enumerate(eot_indices):
- current_seq = labels[last_idx:idx+1]
- if check_header(prompt_header_seqs,current_seq):
- # found prompt header, indicating that this seq should be masked
- labels[last_idx:idx+1] = [-100] * (idx-last_idx+1)
- else:
- last_idx = idx
- # Lastly mask all the assistant header prompt <|start_header_id|>assistant<|end_header_id|>, which has been tokenized to [128006, 78191, 128007]
- assistant_header_seq = [128006, 78191, 128007]
- labels = replace_target(assistant_header_seq,labels)
- dialog_tokens = [dialog_tokens]
- labels_tokens = [labels]
- else:
- raise Exception("This raft_dataset only supports Llama 3 family models, please make sure the tokenizer is from Llama 3 family models.")
- combined_tokens = {
- "input_ids": list(itertools.chain(*(t for t in dialog_tokens))),
- "labels": list(itertools.chain(*(t for t in labels_tokens))),
- }
- return dict(combined_tokens, attention_mask=[1]*len(combined_tokens["input_ids"]))
- def raft_tokenize(q_a_pair, tokenizer):
- end_tag = "</DOCUMENT>"
- # find the last end_tag in the instruction, the rest is the question
- try:
- index =q_a_pair["instruction"].rindex(end_tag)+len(end_tag)
- except ValueError:
- print(q_a_pair["instruction"])
- raise Exception("The instruction does not contain the end tag <\/DOCUMENT>")
- # all the lines after end_tag are the question
- question = q_a_pair["instruction"][index:].strip()
- # all the lines before end_tag are the context
- documents = q_a_pair["instruction"][:index].strip()
- # output is the label
- answer = q_a_pair["output"]
- system_prompt = "You are a helpful chatbot who can provide an answer to every questions from the user given a relevant context."
- user_prompt = """
- Question: {question}\nContext: {context}\n
- Answer this question using the information given by multiple documents in the context above. Here are the things to pay attention to:
- - The context contains many documents, each document starts with <DOCUMENT> and ends </DOCUMENT>.
- - First provide step-by-step reasoning on how to answer the question.
- - In the reasoning, if you need to copy paste some sentences from the context, include them in ##begin_quote## and ##end_quote##. This would mean that things outside of ##begin_quote## and ##end_quote## are not directly copy paste from the context.
- - End your response with final answer in the form <ANSWER>: $answer, the answer should less than 60 words.
- You MUST begin your final answer with the tag "<ANSWER>:".
- """.format(question=question, context=documents)
- chat = [
- {"role": "system", "content": system_prompt},
- {"role": "user", "content": user_prompt},
- {"role": "assistant", "content": answer}
- ]
- return tokenize_dialog(chat, tokenizer)
- def get_custom_dataset(dataset_config, tokenizer, split, split_ratio=0.9):
- # load_dataset will return DatasetDict that contains all the data in the train set
- dataset_dict = load_dataset('json', data_files=dataset_config.data_path)
- dataset = dataset_dict['train']
- dataset = dataset.train_test_split(test_size=1-split_ratio, shuffle=True, seed=42)
- dataset = dataset[split].map(lambda sample: {
- "instruction": sample["instruction"],
- "output": sample["cot_answer"],
- },
- batched=True,
- )
- dataset = dataset.map(lambda x: raft_tokenize(x, tokenizer))
- return dataset
|