Himanshu Shukla 0e2703c5bd Added complete inferencing functionality of 1. terminal inferencing, 2. gradio inferencing, 3. checkpoint inferencing in UI/CLI преди 10 месеца
..
NotebookLlama 716c23f9d0 Update Step-1 PDF-Pre-Processing-Logic.ipynb (#756) преди 10 месеца
RAG 017bee0356 Update hello_llama_cloud.ipynb (#754) преди 10 месеца
Running_Llama3_Anywhere 0f632b3e3d Fix version number in Python example преди 1 година
agents a6c7fe650b Fix 2 преди 11 месеца
finetuning 4377505e4f Moved the file code-merge-inference.py from fine-tuning firectory to local_inference преди 10 месеца
images 50fcb53165 removed unnecessary images and updated colab link преди 10 месеца
inference 0e2703c5bd Added complete inferencing functionality of 1. terminal inferencing, 2. gradio inferencing, 3. checkpoint inferencing in UI/CLI преди 10 месеца
Getting_to_know_Llama.ipynb ee34e1be19 typo fix lama -> llama line 127 преди 1 година
Prompt_Engineering_with_Llama_3.ipynb cb05f6e01a Add files via upload преди 1 година
README.md e814d7d672 Update README.md преди 10 месеца
build_with_Llama_3_2.ipynb 50fcb53165 removed unnecessary images and updated colab link преди 10 месеца

README.md

Llama-Recipes Quickstart

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Build_with_Llama 3.2 notebook showcases a comprehensive walkthrough of the new capabilities of Llama 3.2 models, including multimodal use cases, function/tool calling, Llama Stack, and Llama on edge.
  • The Running_Llama_Anywhere notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
  • The Prompt_Engineering_with_Llama notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in finetuning.py which supports these features: