123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import sys
- from pathlib import Path
- from typing import List, TypedDict
- from unittest.mock import patch
- import pytest
- import torch
- from llama_cookbook.inference.chat_utils import read_dialogs_from_file
- ROOT_DIR = Path(__file__).parents[2]
- CHAT_COMPLETION_DIR = ROOT_DIR / "getting-started/inference/local_inference/chat_completion/"
- sys.path = [CHAT_COMPLETION_DIR.as_posix()] + sys.path
- default_system_prompt = [{"role": "system", "content": "Cutting Knowledge Date: December 2023\nToday Date: 26 Jul 2024\n\n"}]
- def _encode_header(message, tokenizer):
- tokens = []
- tokens.extend(tokenizer.encode("<|start_header_id|>", add_special_tokens=False))
- tokens.extend(tokenizer.encode(message["role"], add_special_tokens=False))
- tokens.extend(tokenizer.encode("<|end_header_id|>", add_special_tokens=False))
- tokens.extend(tokenizer.encode("\n\n", add_special_tokens=False))
- return tokens
- def _encode_message(message, tokenizer):
- tokens = _encode_header(message, tokenizer)
- tokens.extend(tokenizer.encode(message["content"], add_special_tokens=False))
- tokens.extend(tokenizer.encode("<|eot_id|>", add_special_tokens=False))
- return tokens
- def _format_dialog(dialog, tokenizer):
- tokens = []
- tokens.extend(tokenizer.encode("<|begin_of_text|>", add_special_tokens=False))
- if dialog[0]["role"] == "system":
- dialog[0]["content"] = default_system_prompt[0]["content"] + dialog[0]["content"]
- else:
- dialog = default_system_prompt + dialog
- for msg in dialog:
- tokens.extend(_encode_message(msg, tokenizer))
- return tokens
- def _format_tokens_llama3(dialogs, tokenizer):
- return [_format_dialog(dialog, tokenizer) for dialog in dialogs]
- @pytest.mark.skip_missing_tokenizer
- @patch("chat_completion.AutoTokenizer")
- @patch("chat_completion.load_model")
- def test_chat_completion(
- load_model, tokenizer, setup_tokenizer, llama_tokenizer, llama_version
- ):
- if "Llama-2" in llama_version or llama_version == "fake_llama":
- pytest.skip(f"skipping test for {llama_version}")
- from chat_completion import main
- setup_tokenizer(tokenizer)
- load_model.return_value.get_input_embeddings.return_value.weight.shape = [128256]
- kwargs = {
- "prompt_file": (CHAT_COMPLETION_DIR / "chats.json").as_posix(),
- }
- main(llama_version, **kwargs)
- dialogs = read_dialogs_from_file(kwargs["prompt_file"])
- REF_RESULT = _format_tokens_llama3(dialogs, llama_tokenizer[llama_version])
- assert all(
- (
- load_model.return_value.generate.mock_calls[0 * 4][2]["input_ids"].cpu()
- == torch.tensor(REF_RESULT[0]).long()
- ).tolist()
- )
- assert all(
- (
- load_model.return_value.generate.mock_calls[1 * 4][2]["input_ids"].cpu()
- == torch.tensor(REF_RESULT[1]).long()
- ).tolist()
- )
- assert all(
- (
- load_model.return_value.generate.mock_calls[2 * 4][2]["input_ids"].cpu()
- == torch.tensor(REF_RESULT[2]).long()
- ).tolist()
- )
- assert all(
- (
- load_model.return_value.generate.mock_calls[3 * 4][2]["input_ids"].cpu()
- == torch.tensor(REF_RESULT[3]).long()
- ).tolist()
- )
- assert all(
- (
- load_model.return_value.generate.mock_calls[4 * 4][2]["input_ids"].cpu()
- == torch.tensor(REF_RESULT[4]).long()
- ).tolist()
- )
|