| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- from dataclasses import dataclass
 
- @dataclass
 
- class train_config:
 
-     model_name: str="PATH/to/Model"
 
-     tokenizer_name: str=None
 
-     enable_fsdp: bool=False # shards model parameters, optimizer states and gradients across DDP ranks
 
-     low_cpu_fsdp: bool=False # saves cpu memory by loading pretrained model on rank0 only
 
-     run_validation: bool=True
 
-     batch_size_training: int=4
 
-     batching_strategy: str="packing" #alternative: padding
 
-     context_length: int=4096
 
-     gradient_accumulation_steps: int=1
 
-     gradient_clipping: bool = False
 
-     gradient_clipping_threshold: float = 1.0
 
-     num_epochs: int=3
 
-     max_train_step: int=0
 
-     max_eval_step: int=0
 
-     num_workers_dataloader: int=1
 
-     lr: float=1e-4
 
-     weight_decay: float=0.0
 
-     gamma: float= 0.85 # multiplicatively decay the learning rate by gamma after each epoch
 
-     seed: int=42
 
-     use_fp16: bool=False  # load model paramater in torch.float16 dtype (not recommended)
 
-     mixed_precision: bool=True
 
-     val_batch_size: int=1
 
-     dataset = "samsum_dataset"
 
-     peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP)
 
-     use_peft: bool=False # use parameter efficient fine tuning
 
-     from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint
 
-     output_dir: str = "PATH/to/save/PEFT/model"
 
-     freeze_layers: bool = False
 
-     num_freeze_layers: int = 1
 
-     freeze_LLM_only: bool = False # Freeze self-attention layers in the language_model. Vision model, multi_modal_projector, cross-attention will be fine-tuned
 
-     quantization: str = None
 
-     one_gpu: bool = False
 
-     save_model: bool = True
 
-     dist_checkpoint_root_folder: str="PATH/to/save/FSDP/model" # will be used if using FSDP
 
-     dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP
 
-     save_optimizer: bool=False # will be used if using FSDP
 
-     use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
 
-     use_wandb: bool = False # Enable wandb for experient tracking
 
-     save_metrics: bool = False # saves training metrics to a json file for later plotting
 
-     flop_counter: bool = False # Enable flop counter to measure model throughput, can not be used with pytorch profiler at the same time.
 
-     flop_counter_start: int = 3 # The step to start profiling, default is 3, which means after 3 steps of warmup stage, the profiler will start to count flops.
 
-     use_profiler: bool = False # Enable pytorch profiler, can not be used with flop counter at the same time.
 
-     profiler_dir: str = "PATH/to/save/profiler/results" # will be used if using profiler
 
 
  |