| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import pytestfrom unittest.mock import patchfrom transformers import LlamaTokenizerdef check_padded_entry(batch):    seq_len = sum(batch["attention_mask"][0])    assert seq_len < len(batch["attention_mask"][0])    assert batch["labels"][0][0] == -100    assert batch["labels"][0][seq_len-1] == 2    assert batch["labels"][0][-1] == -100    assert batch["input_ids"][0][0] == 1    assert batch["input_ids"][0][-1] == 2@pytest.mark.skip_missing_tokenizer()@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaTokenizer')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):    from llama_recipes.finetuning import main    setup_tokenizer(tokenizer)    kwargs = {        "dataset": "custom_dataset",        "model_name": "meta-llama/Llama-2-7b-hf",        "custom_dataset.file": "examples/custom_dataset.py",        "custom_dataset.train_split": "validation",        "batch_size_training": 2,        "val_batch_size": 4,        "use_peft": False,        "batching_strategy": "padding"        }    main(**kwargs)    assert train.call_count == 1    args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    tokenizer = args[3]    assert len(train_dataloader) == 1120    assert len(eval_dataloader) == 1120 //2    it = iter(eval_dataloader)    batch = next(it)    STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)    EXPECTED_STRING = "[INST] Who made Berlin [/INST] dunno"    assert STRING.startswith(EXPECTED_STRING)    assert batch["input_ids"].size(0) == 4    assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())    check_padded_entry(batch)    it = iter(train_dataloader)    for _ in range(5):        next(it)    batch = next(it)    STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=True)    EXPECTED_STRING = "[INST] How do I initialize a Typescript project using npm and git? [/INST] # Initialize a new NPM project"    assert STRING.startswith(EXPECTED_STRING)    assert batch["input_ids"].size(0) == 2    assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())    check_padded_entry(batch)@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):    from llama_recipes.finetuning import main    tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})    kwargs = {        "dataset": "custom_dataset",        "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",        "batch_size_training": 1,        "use_peft": False,        }    with pytest.raises(AttributeError):        main(**kwargs)
 |