123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- import os
- import sys
- import argparse
- from PIL import Image as PIL_Image
- import torch
- from transformers import MllamaForConditionalGeneration, MllamaProcessor
- from accelerate import Accelerator
- from peft import PeftModel # Make sure to install the `peft` library
- accelerator = Accelerator()
- device = accelerator.device
- # Constants
- DEFAULT_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct"
- def load_model_and_processor(model_name: str, hf_token: str, finetuning_path: str = None):
- """
- Load the model and processor, and optionally load adapter weights if specified
- """
- # Load pre-trained model and processor
- model = MllamaForConditionalGeneration.from_pretrained(
- model_name,
- torch_dtype=torch.bfloat16,
- use_safetensors=True,
- device_map=device,
- token=hf_token
- )
- processor = MllamaProcessor.from_pretrained(
- model_name,
- token=hf_token,
- use_safetensors=True
- )
- # If a finetuning path is provided, load the adapter model
- if finetuning_path and os.path.exists(finetuning_path):
- adapter_weights_path = os.path.join(finetuning_path, "adapter_model.safetensors")
- adapter_config_path = os.path.join(finetuning_path, "adapter_config.json")
- if os.path.exists(adapter_weights_path) and os.path.exists(adapter_config_path):
- print(f"Loading adapter from '{finetuning_path}'...")
- # Load the model with adapters using `peft`
- model = PeftModel.from_pretrained(
- model,
- finetuning_path, # This should be the folder containing the adapter files
- is_adapter=True,
- torch_dtype=torch.bfloat16
- )
- print("Adapter merged successfully with the pre-trained model.")
- else:
- print(f"Adapter files not found in '{finetuning_path}'. Using pre-trained model only.")
- else:
- print(f"No fine-tuned weights or adapters found in '{finetuning_path}'. Using pre-trained model only.")
- # Prepare the model and processor for accelerated training
- model, processor = accelerator.prepare(model, processor)
-
- return model, processor
- def process_image(image_path: str) -> PIL_Image.Image:
- """
- Open and convert an image from the specified path.
- """
- if not os.path.exists(image_path):
- print(f"The image file '{image_path}' does not exist.")
- sys.exit(1)
- with open(image_path, "rb") as f:
- return PIL_Image.open(f).convert("RGB")
- def generate_text_from_image(model, processor, image, prompt_text: str, temperature: float, top_p: float):
- """
- Generate text from an image using the model and processor.
- """
- conversation = [
- {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
- ]
- prompt = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
- inputs = processor(image, prompt, return_tensors="pt").to(device)
- output = model.generate(**inputs, temperature=temperature, top_p=top_p, max_new_tokens=2048)
- return processor.decode(output[0])[len(prompt):]
- def main(image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str, hf_token: str, finetuning_path: str = None):
- """
- Call all the functions and optionally merge adapter weights from a specified path.
- """
- model, processor = load_model_and_processor(model_name, hf_token, finetuning_path)
- image = process_image(image_path)
- result = generate_text_from_image(model, processor, image, prompt_text, temperature, top_p)
- print("Generated Text: " + result)
- if __name__ == "__main__":
- # Example usage with argparse (optional)
- parser = argparse.ArgumentParser(description="Generate text from an image using a fine-tuned model with adapters.")
- parser.add_argument("--image_path", type=str, required=True, help="Path to the input image.")
- parser.add_argument("--prompt_text", type=str, required=True, help="Prompt text for the image.")
- parser.add_argument("--temperature", type=float, default=0.7, help="Sampling temperature.")
- parser.add_argument("--top_p", type=float, default=0.9, help="Top-p sampling.")
- parser.add_argument("--model_name", type=str, default=DEFAULT_MODEL, help="Pre-trained model name.")
- parser.add_argument("--hf_token", type=str, required=True, help="Hugging Face API token.")
- parser.add_argument("--finetuning_path", type=str, help="Path to the fine-tuning weights (adapters).")
-
- args = parser.parse_args()
- main(
- image_path=args.image_path,
- prompt_text=args.prompt_text,
- temperature=args.temperature,
- top_p=args.top_p,
- model_name=args.model_name,
- hf_token=args.hf_token,
- finetuning_path=args.finetuning_path
- )
|