| 1234567891011121314151617181920212223242526272829303132333435363738394041 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- from dataclasses import dataclass
 
- @dataclass
 
- class train_config:
 
-     model_name: str="PATH/to/LLAMA/7B"
 
-     enable_fsdp: bool=False
 
-     low_cpu_fsdp: bool=False
 
-     run_validation: bool=True
 
-     batch_size_training: int=4
 
-     num_epochs: int=3
 
-     num_workers_dataloader: int=1
 
-     lr: float=1e-4
 
-     weight_decay: float=0.0
 
-     gamma: float= 0.85
 
-     seed: int=42
 
-     use_fp16: bool=False
 
-     mixed_precision: bool=True
 
-     val_batch_size: int=1
 
-     dataset = "samsum_dataset"
 
-     micro_batch_size: int=4
 
-     peft_method: str = "lora" # None , llama_adapter, prefix
 
-     use_peft: bool=False
 
-     output_dir: str = "PATH/to/save/PEFT/model"
 
-     freeze_layers: bool = False
 
-     num_freeze_layers: int = 1
 
-     quantization: bool = False
 
-     one_gpu: bool = False
 
-     save_model: bool = True
 
-     dist_checkpoint_root_folder: str="PATH/to/save/FSDP/model" # will be used if using FSDP
 
-     dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP
 
-     save_optimizer: bool=False # will be used if using FSDP
 
-     use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
 
-     
 
-     
 
-     
 
 
  |