inference.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import os
  4. import sys
  5. import time
  6. import fire
  7. import gradio as gr
  8. import torch
  9. from accelerate.utils import is_xpu_available
  10. from llama_recipes.inference.model_utils import load_model, load_peft_model
  11. from llama_recipes.inference.safety_utils import AgentType, get_safety_checker
  12. from transformers import AutoTokenizer
  13. def main(
  14. model_name,
  15. peft_model: str = None,
  16. quantization: str = None, # Options: 4bit, 8bit
  17. max_new_tokens=100, # The maximum numbers of tokens to generate
  18. prompt_file: str = None,
  19. seed: int = 42, # seed value for reproducibility
  20. do_sample: bool = True, # Whether or not to use sampling ; use greedy decoding otherwise.
  21. min_length: int = None, # The minimum length of the sequence to be generated, input prompt + min_new_tokens
  22. use_cache: bool = True, # [optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  23. top_p: float = 1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  24. temperature: float = 1.0, # [optional] The value used to modulate the next token probabilities.
  25. top_k: int = 50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  26. repetition_penalty: float = 1.0, # The parameter for repetition penalty. 1.0 means no penalty.
  27. length_penalty: int = 1, # [optional] Exponential penalty to the length that is used with beam-based generation.
  28. enable_azure_content_safety: bool = False, # Enable safety check with Azure content safety api
  29. enable_sensitive_topics: bool = False, # Enable check for sensitive topics using AuditNLG APIs
  30. enable_salesforce_content_safety: bool = True, # Enable safety check with Salesforce safety flan t5
  31. enable_llamaguard_content_safety: bool = False,
  32. max_padding_length: int = None, # the max padding length to be used with tokenizer padding the prompts.
  33. use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  34. share_gradio: bool = False, # Enable endpoint creation for gradio.live
  35. **kwargs,
  36. ):
  37. # Set the seeds for reproducibility
  38. if is_xpu_available():
  39. torch.xpu.manual_seed(seed)
  40. else:
  41. torch.cuda.manual_seed(seed)
  42. torch.manual_seed(seed)
  43. model = load_model(model_name, quantization, use_fast_kernels, **kwargs)
  44. if peft_model:
  45. model = load_peft_model(model, peft_model)
  46. model.eval()
  47. tokenizer = AutoTokenizer.from_pretrained(model_name)
  48. tokenizer.pad_token = tokenizer.eos_token
  49. def inference(
  50. user_prompt,
  51. temperature,
  52. top_p,
  53. top_k,
  54. max_new_tokens,
  55. **kwargs,
  56. ):
  57. safety_checker = get_safety_checker(
  58. enable_azure_content_safety,
  59. enable_sensitive_topics,
  60. enable_salesforce_content_safety,
  61. enable_llamaguard_content_safety,
  62. )
  63. # Safety check of the user prompt
  64. safety_results = [check(user_prompt) for check in safety_checker]
  65. are_safe = all([r[1] for r in safety_results])
  66. if are_safe:
  67. print("User prompt deemed safe.")
  68. print(f"User prompt:\n{user_prompt}")
  69. else:
  70. print("User prompt deemed unsafe.")
  71. for method, is_safe, report in safety_results:
  72. if not is_safe:
  73. print(method)
  74. print(report)
  75. print("Skipping the inference as the prompt is not safe.")
  76. return # Exit the program with an error status
  77. batch = tokenizer(
  78. user_prompt,
  79. truncation=True,
  80. max_length=max_padding_length,
  81. return_tensors="pt",
  82. )
  83. if is_xpu_available():
  84. batch = {k: v.to("xpu") for k, v in batch.items()}
  85. else:
  86. batch = {k: v.to("cuda") for k, v in batch.items()}
  87. start = time.perf_counter()
  88. with torch.no_grad():
  89. outputs = model.generate(
  90. **batch,
  91. max_new_tokens=max_new_tokens,
  92. do_sample=do_sample,
  93. top_p=top_p,
  94. temperature=temperature,
  95. min_length=min_length,
  96. use_cache=use_cache,
  97. top_k=top_k,
  98. repetition_penalty=repetition_penalty,
  99. length_penalty=length_penalty,
  100. **kwargs,
  101. )
  102. e2e_inference_time = (time.perf_counter() - start) * 1000
  103. print(f"the inference time is {e2e_inference_time} ms")
  104. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  105. # Safety check of the model output
  106. safety_results = [
  107. check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt)
  108. for check in safety_checker
  109. ]
  110. are_safe = all([r[1] for r in safety_results])
  111. if are_safe:
  112. print("User input and model output deemed safe.")
  113. print(f"Model output:\n{output_text}")
  114. return output_text
  115. else:
  116. print("Model output deemed unsafe.")
  117. for method, is_safe, report in safety_results:
  118. if not is_safe:
  119. print(method)
  120. print(report)
  121. return None
  122. if prompt_file is not None:
  123. assert os.path.exists(
  124. prompt_file
  125. ), f"Provided Prompt file does not exist {prompt_file}"
  126. with open(prompt_file, "r") as f:
  127. user_prompt = "\n".join(f.readlines())
  128. inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
  129. elif not sys.stdin.isatty():
  130. user_prompt = "\n".join(sys.stdin.readlines())
  131. inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
  132. else:
  133. gr.Interface(
  134. fn=inference,
  135. inputs=[
  136. gr.components.Textbox(
  137. lines=9,
  138. label="User Prompt",
  139. placeholder="none",
  140. ),
  141. gr.components.Slider(
  142. minimum=0, maximum=1, value=1.0, label="Temperature"
  143. ),
  144. gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Top p"),
  145. gr.components.Slider(
  146. minimum=0, maximum=100, step=1, value=50, label="Top k"
  147. ),
  148. gr.components.Slider(
  149. minimum=1, maximum=2000, step=1, value=200, label="Max tokens"
  150. ),
  151. ],
  152. outputs=[
  153. gr.components.Textbox(
  154. lines=5,
  155. label="Output",
  156. )
  157. ],
  158. title="Meta Llama3 Playground",
  159. description="https://github.com/meta-llama/llama-recipes",
  160. ).queue().launch(server_name="0.0.0.0", share=share_gradio)
  161. if __name__ == "__main__":
  162. fire.Fire(main)