| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 | import loggingimport osimport argparsefrom raft_utils import generate_questions, add_chunk_to_datasetfrom format import DatasetConverter, datasetFormats, outputDatasetTypesfrom config import load_configlogging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')def main(api_config):    ds = None    try:        logging.info("Starting to generate question pair.")        # Generate questions as list for each chunk        chunk_questions_zip = generate_questions(api_config)        if not chunk_questions_zip:            logging.warning("No questions generated from text. Please check the api_config or model configuration.")            return        logging.info(f"Successfully generated {sum([len(q) for c,q in chunk_questions_zip])} question/answer pairs.")        ds = add_chunk_to_dataset(chunk_questions_zip,api_config)        ds.save_to_disk(args.output)        logging.info(f"Data successfully written to {api_config['output']}. Process completed.")        formatter = DatasetConverter()        # Extract format specific params        format_params = {}        formatter.convert(ds=ds, format=args.output_format, output_path=args.output+"raft", output_type=args.output_type, params=format_params)    except Exception as e:        logging.error(f"An unexpected error occurred during the process: {e}",exc_info=True)def parse_arguments():    # Define command line arguments for the script    parser = argparse.ArgumentParser(        description="Generate RAFT question/answer/context pairs from documentation."    )    parser.add_argument(        "-t", "--questions_per_chunk",        type=int,        default=4,        help="Specify the number of question pairs to generate per chunk."    )    parser.add_argument(        "-m", "--model",        default="meta-llama/Meta-Llama-3-70B-Instruct",        help="Select the model to use for generation."    )    parser.add_argument(        "-c", "--config_path",        default="./raft.yaml",        help="Set the configuration file path that has system prompt along with language, dataset path and number of questions."    )    parser.add_argument(        "-u", "--endpoint_url",        default="http://localhost:8001/v1",        type=str,        help="LLM API url for generating question/answer pairs."    )    parser.add_argument(        "-k", "--api_key",        default="EMPTY",        type=str,        help="LLM API key for generating question/answer pairs."    )    parser.add_argument("--chunk_size", type=int, default=1000, help="The size of each chunk in number of tokens")    parser.add_argument("-o","--output", type=str, default="./output/", help="The path at which to save the dataset")    parser.add_argument("--output-format", type=str, default="hf", help="Format to convert the dataset to. Defaults to hf.", choices=datasetFormats)    parser.add_argument("--output-type", type=str, default="jsonl", help="Type to export the dataset to. Defaults to jsonl.", choices=outputDatasetTypes)    return parser.parse_args()if __name__ == "__main__":    logging.info("Initializing the process and loading configuration...")    args = parse_arguments()    api_config = load_config(args.config_path)    api_config["questions_per_chunk"] = args.questions_per_chunk    api_config["model"] = args.model    api_config["chunk_size"] = args.chunk_size    api_config["endpoint_url"] = args.endpoint_url    api_config["output"] = args.output    api_config["api_key"] = args.api_key    # if OPENAI_API_KEY is defined in the system environment, use it as the API key    if os.environ.get('API_KEY') is not None:        api_config["api_key"] = os.environ["API_KEY"]    logging.info(f"Configuration loaded. Generating {args.questions_per_chunk} question per chunk using model '{args.model}'.")    logging.info(f"Chunk size: {args.chunk_size}.")    logging.info(f"num_distract_docs: {api_config['num_distract_docs']}, refusal_probability: {api_config['refusal_probability']}")    logging.info(f"Will use endpoint_url: {args.endpoint_url}.")    logging.info(f"Output will be written to {args.output}.")    main(api_config)
 |