| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- import pytest
 
- from unittest.mock import patch
 
- from transformers import LlamaTokenizer
 
- EXPECTED_RESULTS={
 
-     "meta-llama/Llama-2-7b-hf":{
 
-         "example_1": "[INST] Who made Berlin [/INST] dunno",
 
-         "example_2": "[INST] Quiero preparar una pizza de pepperoni, puedes darme los pasos para hacerla? [/INST] Claro!",
 
-     },
 
-     "meta-llama/Meta-Llama-3-8B":{
 
-         "example_1": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nWho made Berlin<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\ndunno<|eot_id|><|end_of_text|>",
 
-         "example_2": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow to start learning guitar and become a master at it?",
 
-     },
 
- }
 
- def check_padded_entry(batch, tokenizer):
 
-     seq_len = sum(batch["attention_mask"][0])
 
-     assert seq_len < len(batch["attention_mask"][0])
 
-     if tokenizer.vocab_size >= 128000:
 
-         END_OF_TEXT_ID = 128009
 
-     else:
 
-         END_OF_TEXT_ID = tokenizer.eos_token_id
 
-     assert batch["labels"][0][0] == -100
 
-     assert batch["labels"][0][seq_len-1] == END_OF_TEXT_ID
 
-     assert batch["labels"][0][-1] == -100
 
-     assert batch["input_ids"][0][0] == tokenizer.bos_token_id
 
-     assert batch["input_ids"][0][-1] == tokenizer.eos_token_id
 
- @pytest.mark.skip_missing_tokenizer
 
- @patch('llama_recipes.finetuning.train')
 
- @patch('llama_recipes.finetuning.AutoTokenizer')
 
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 
- @patch('llama_recipes.finetuning.optim.AdamW')
 
- @patch('llama_recipes.finetuning.StepLR')
 
- def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
 
-     from llama_recipes.finetuning import main
 
-     setup_tokenizer(tokenizer)
 
-     skip_special_tokens = llama_version == "meta-llama/Llama-2-7b-hf"
 
-     kwargs = {
 
-         "dataset": "custom_dataset",
 
-         "model_name": llama_version,
 
-         "custom_dataset.file": "recipes/finetuning/datasets/custom_dataset.py",
 
-         "custom_dataset.train_split": "validation",
 
-         "batch_size_training": 2,
 
-         "val_batch_size": 4,
 
-         "use_peft": False,
 
-         "batching_strategy": "padding"
 
-         }
 
-     main(**kwargs)
 
-     assert train.call_count == 1
 
-     args, kwargs = train.call_args
 
-     train_dataloader = args[1]
 
-     eval_dataloader = args[2]
 
-     tokenizer = args[3]
 
-     assert len(train_dataloader) == 1120
 
-     assert len(eval_dataloader) == 1120 //2
 
-     it = iter(eval_dataloader)
 
-     batch = next(it)
 
-     STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=skip_special_tokens)
 
-     assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_1"])
 
-     assert batch["input_ids"].size(0) == 4
 
-     assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
 
-     check_padded_entry(batch, tokenizer)
 
-     it = iter(train_dataloader)
 
-     next(it)
 
-     batch = next(it)
 
-     STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=skip_special_tokens)
 
-     assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_2"])
 
-     assert batch["input_ids"].size(0) == 2
 
-     assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
 
-     check_padded_entry(batch, tokenizer)
 
- @patch('llama_recipes.finetuning.train')
 
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 
- @patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')
 
- @patch('llama_recipes.finetuning.optim.AdamW')
 
- @patch('llama_recipes.finetuning.StepLR')
 
- def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):
 
-     from llama_recipes.finetuning import main
 
-     tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
 
-     kwargs = {
 
-         "dataset": "custom_dataset",
 
-         "custom_dataset.file": "recipes/finetuning/datasets/custom_dataset.py:get_unknown_dataset",
 
-         "batch_size_training": 1,
 
-         "use_peft": False,
 
-         }
 
-     with pytest.raises(AttributeError):
 
-         main(**kwargs)
 
 
  |