| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import pytestfrom unittest.mock import patchEXPECTED_SAMPLE_NUMBER ={    "meta-llama/Llama-2-7b-hf": {        "train": 96,        "eval": 42,    },    "meta-llama/Meta-Llama-3-8B": {        "train": 79,        "eval": 34,    }}@pytest.mark.skip_missing_tokenizer@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.AutoTokenizer')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_packing(step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer, llama_version):    from llama_recipes.finetuning import main    setup_tokenizer(tokenizer)    kwargs = {        "model_name": llama_version,        "batch_size_training": 8,        "val_batch_size": 1,        "use_peft": False,        "dataset": "samsum_dataset",        "batching_strategy": "packing",        }    main(**kwargs)    assert train.call_count == 1    args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    assert len(train_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["train"]    assert len(eval_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["eval"]    batch = next(iter(train_dataloader))    assert "labels" in batch.keys()    assert "input_ids" in batch.keys()    assert "attention_mask" in batch.keys()    assert batch["labels"][0].size(0) == 4096    assert batch["input_ids"][0].size(0) == 4096    assert batch["attention_mask"][0].size(0) == 4096@pytest.mark.skip_missing_tokenizer@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.AutoTokenizer')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')@patch('llama_recipes.finetuning.setup')@patch('llama_recipes.finetuning.FSDP')@patch('llama_recipes.finetuning.torch.distributed.is_initialized')@patch('llama_recipes.utils.config_utils.dist')def test_distributed_packing(dist, is_initialized, fsdp, setup, step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer, llama_version):    import os    from llama_recipes.finetuning import main    setup_tokenizer(tokenizer)    rank = 1    os.environ['LOCAL_RANK'] = f'{rank}'    os.environ['RANK'] = f'{rank}'    os.environ['WORLD_SIZE'] = '2'    os.environ['MASTER_ADDR'] = 'localhost'    os.environ['MASTER_PORT'] = '12345'    kwargs = {        "model_name": llama_version,        "batch_size_training": 8,        "val_batch_size": 1,        "use_peft": False,        "dataset": "samsum_dataset",        "batching_strategy": "packing",        "enable_fsdp": True        }    is_initialized.return_value = True    dist.get_rank.return_value = rank    dist.get_world_size.return_value = 2    main(**kwargs)    assert train.call_count == 1    args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    assert len(train_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["train"] //2    assert len(eval_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["eval"] //2
 |