Igor Kasianenko d5b3422d7c Fix Maverick typo (#912) 8 månader sedan
..
RAG aa60f75d44 Fixed all "Open in Colab" absolute paths 10 månader sedan
finetuning 691bcce716 use absolute links 10 månader sedan
inference 73e8da5176 deprecate octoai 10 månader sedan
responsible_ai 5907e0c23e Removed installation and training outputs from the notebook based on review 8 månader sedan
README.md 216447a490 Llama 4 4.3 release (#24) 8 månader sedan
build_with_llama_4.ipynb d5b3422d7c Fix Maverick typo (#912) 8 månader sedan

README.md

Llama-cookbook Getting Started

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Build_with_Llama 4 notebook showcases a comprehensive walkthrough of the new capabilities of Llama 4 Scout models, including long context, multi-images and function calling.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-cookbook finetuning code found in finetuning.py which supports these features: