| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 | 
							- """
 
- Code borrowed from https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/scripts/merge_tokenizer/merge_tokenizers.py
 
- """
 
- import os
 
- import fire
 
- import re
 
- from transformers import LlamaTokenizer
 
- os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
 
- from huggingface_hub import hf_hub_download
 
- from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
 
- def main(new_tokenizer_path, extended_tokenizer_save_path):
 
-     original_tokenizer_path = hf_hub_download(repo_id="meta-llama/Llama-2-7b-chat-hf", filename="tokenizer.model", local_dir="original_tokenizer")
 
-     original_tokenizer_spm = sp_pb2_model.ModelProto()
 
-     original_tokenizer_spm.ParseFromString(open(original_tokenizer_path, "rb").read())
 
-     new_tokenizer_spm = sp_pb2_model.ModelProto()
 
-     new_tokenizer_spm.ParseFromString(open(os.path.join(new_tokenizer_path, "tokenizer.model"), "rb").read())
 
-     def contains_eng(text):
 
-         eng_pattern = re.compile(r"[\u0020-\u007E]+")
 
-         return True if eng_pattern.search(text) else False
 
-     original_tokenizer_tokenset = set(p.piece for p in original_tokenizer_spm.pieces)
 
-     print(f"Number of tokens before merge: {len(original_tokenizer_tokenset)}")
 
-     for p in new_tokenizer_spm.pieces:
 
-         piece = p.piece
 
-         if piece not in original_tokenizer_tokenset and not contains_eng(piece):
 
-             new_p = sp_pb2_model.ModelProto().SentencePiece()
 
-             new_p.piece = piece
 
-             new_p.score = 0
 
-             original_tokenizer_spm.pieces.append(new_p)
 
-     print(f"Number of tokens after merge: {len(original_tokenizer_spm.pieces)}")
 
-     os.makedirs(extended_tokenizer_save_path, exist_ok=True)
 
-     with open(os.path.join(extended_tokenizer_save_path, "tokenizer.model"), "wb") as f:
 
-         f.write(original_tokenizer_spm.SerializeToString())
 
-     tokenizer = LlamaTokenizer(vocab_file=os.path.join(extended_tokenizer_save_path, "tokenizer.model"), legacy=False)
 
-     tokenizer.save_pretrained(extended_tokenizer_save_path)
 
-     print(f"Tokenizer saved to {extended_tokenizer_save_path}")
 
-     # Verify that the extended tokenizer's English vocab matches with that of the original Llama tokenizer
 
-     tok1 = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf')
 
-     tok2 = LlamaTokenizer.from_pretrained(extended_tokenizer_save_path)
 
-     for i in range(len(tok1)):
 
-         assert tok1.convert_ids_to_tokens(i) == tok2.convert_ids_to_tokens(i), f"Token mismatch at index {i}."
 
- if __name__ == "__main__":
 
-     fire.Fire(main)
 
 
  |