| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import pytestfrom unittest.mock import patch@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_custom_dataset(step_lr, optimizer, get_model, train, mocker):    from llama_recipes.finetuning import main    kwargs = {        "dataset": "custom_dataset",        "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here        "custom_dataset.file": "examples/custom_dataset.py",        "custom_dataset.train_split": "validation",        "batch_size_training": 2,        "use_peft": False,        }    main(**kwargs)    assert train.call_count == 1    args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    tokenizer = args[3]    assert len(train_dataloader) == 226    assert len(eval_dataloader) == 2*226    it = iter(train_dataloader)    STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)    EXPECTED_STRING = "[INST] Напиши функцию на языке swift, которая сортирует массив целых чисел, а затем выводит его на экран [/INST] Вот функция, "    assert STRING.startswith(EXPECTED_STRING)    next(it)    next(it)    next(it)    STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True)    EXPECTED_SUBSTRING_1 = "Therefore you are correct.  [INST] How can L’Hopital’s Rule be"    EXPECTED_SUBSTRING_2 = "a circular path around the turn.  [INST] How on earth is that related to L’Hopital’s Rule?"    assert EXPECTED_SUBSTRING_1 in STRING    assert EXPECTED_SUBSTRING_2 in STRING@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):    from llama_recipes.finetuning import main    tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})    kwargs = {        "dataset": "custom_dataset",        "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset",        "batch_size_training": 1,        "use_peft": False,        }    with pytest.raises(AttributeError):        main(**kwargs)
 |