Beto 0b1228fb83 Merge branch 'main' of github.com:meta-llama/llama-recipes into main 6 maanden geleden
..
RAG 24e8962953 Update hello_llama_cloud.ipynb (#584) 7 maanden geleden
Running_Llama3_Anywhere 0f632b3e3d Fix version number in Python example 7 maanden geleden
agents cc569ef52b colab links fixed 9 maanden geleden
finetuning 0b1228fb83 Merge branch 'main' of github.com:meta-llama/llama-recipes into main 6 maanden geleden
inference 0b1228fb83 Merge branch 'main' of github.com:meta-llama/llama-recipes into main 6 maanden geleden
Getting_to_know_Llama.ipynb ee34e1be19 typo fix lama -> llama line 127 8 maanden geleden
Prompt_Engineering_with_Llama_3.ipynb cb05f6e01a Add files via upload 8 maanden geleden
README.md 6addcb8fa0 move feature table to main readme 8 maanden geleden

README.md

Llama-Recipes Quickstart

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Running_Llama_Anywhere notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
  • The Prompt_Engineering_with_Llama notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in finetuning.py which supports these features: