| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
 
- import fire
 
- import json
 
- import os
 
- import sys
 
- import torch
 
- from transformers import AutoTokenizer
 
- from llama_cookbook.inference.chat_utils import read_dialogs_from_file
 
- from llama_cookbook.inference.model_utils import load_model, load_peft_model
 
- from llama_cookbook.inference.safety_utils import get_safety_checker
 
- from accelerate.utils import is_xpu_available
 
- def main(
 
-     model_name,
 
-     peft_model: str=None,
 
-     quantization: str = None, # Options: 4bit, 8bit
 
-     max_new_tokens =256, #The maximum numbers of tokens to generate
 
-     min_new_tokens:int=0, #The minimum numbers of tokens to generate
 
-     prompt_file: str=None,
 
-     seed: int=42, #seed value for reproducibility
 
-     safety_score_threshold: float=0.5,
 
-     do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
 
-     use_cache: bool=True,  #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
 
-     top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
 
-     temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
 
-     top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
 
-     repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
 
-     length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
 
-     enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
 
-     enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
 
-     enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
 
-     use_fast_kernels: bool = False, # Enable using SDPA from PyTorch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
 
-     enable_llamaguard_content_safety: bool = False,
 
-     **kwargs
 
- ):
 
-     if prompt_file is not None:
 
-         assert os.path.exists(
 
-             prompt_file
 
-         ), f"Provided Prompt file does not exist {prompt_file}"
 
-         dialogs= read_dialogs_from_file(prompt_file)
 
-     elif not sys.stdin.isatty():
 
-         dialogs = "\n".join(sys.stdin.readlines())
 
-         try:
 
-             dialogs = json.loads(dialogs)
 
-         except:
 
-             print("Could not parse json from stdin. Please provide a json file with the user prompts. Exiting.")
 
-             sys.exit(1)
 
-     else:
 
-         print("No user prompt provided. Exiting.")
 
-         sys.exit(1)
 
-     print(f"User dialogs:\n{dialogs}")
 
-     print("\n==================================\n")
 
-     
 
-     # Set the seeds for reproducibility
 
-     if is_xpu_available():
 
-         torch.xpu.manual_seed(seed)
 
-     else:
 
-         torch.cuda.manual_seed(seed)
 
-     torch.manual_seed(seed)
 
-     model = load_model(model_name, quantization, use_fast_kernels, **kwargs)
 
-     if peft_model:
 
-         model = load_peft_model(model, peft_model)
 
-     tokenizer = AutoTokenizer.from_pretrained(model_name)
 
-     chats = [tokenizer.apply_chat_template(dialog) for dialog in dialogs]
 
-     with torch.no_grad():
 
-         for idx, chat in enumerate(chats):
 
-             safety_checker = get_safety_checker(enable_azure_content_safety,
 
-                                         enable_sensitive_topics,
 
-                                         enable_saleforce_content_safety,
 
-                                         enable_llamaguard_content_safety,
 
-                                         )
 
-             # Safety check of the user prompt
 
-             safety_results = [check(dialogs[idx][0]["content"]) for check in safety_checker]
 
-             are_safe = all([r[1] for r in safety_results])
 
-             if are_safe:
 
-                 print(f"User prompt deemed safe.")
 
-                 print("User prompt:\n", dialogs[idx][0]["content"])
 
-                 print("\n==================================\n")
 
-             else:
 
-                 print("User prompt deemed unsafe.")
 
-                 for method, is_safe, report in safety_results:
 
-                     if not is_safe:
 
-                         print(method)
 
-                         print(report)
 
-                 print("Skipping the inferece as the prompt is not safe.")
 
-                 sys.exit(1)  # Exit the program with an error status
 
-             tokens= torch.tensor(chat).long()
 
-             tokens= tokens.unsqueeze(0)
 
-             attention_mask = torch.ones_like(tokens)
 
-             if is_xpu_available():
 
-                 tokens= tokens.to("xpu:0")
 
-             else:
 
-                 tokens= tokens.to("cuda:0")
 
-             outputs = model.generate(
 
-                 input_ids=tokens,
 
-                 attention_mask=attention_mask,
 
-                 max_new_tokens=max_new_tokens,
 
-                 do_sample=do_sample,
 
-                 top_p=top_p,
 
-                 temperature=temperature,
 
-                 use_cache=use_cache,
 
-                 top_k=top_k,
 
-                 repetition_penalty=repetition_penalty,
 
-                 length_penalty=length_penalty,
 
-                 **kwargs
 
-             )
 
-             output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
-             # Safety check of the model output
 
-             safety_results = [check(output_text) for check in safety_checker]
 
-             are_safe = all([r[1] for r in safety_results])
 
-             if are_safe:
 
-                 print("User input and model output deemed safe.")
 
-                 print(f"Model output:\n{output_text}")
 
-                 print("\n==================================\n")
 
-             else:
 
-                 print("Model output deemed unsafe.")
 
-                 for method, is_safe, report in safety_results:
 
-                     if not is_safe:
 
-                         print(method)
 
-                         print(report)
 
- if __name__ == "__main__":
 
-     fire.Fire(main)
 
 
  |