Kai Wu 57afa0b51e use AutoModel пре 6 месеци
..
RAG 24e8962953 Update hello_llama_cloud.ipynb (#584) пре 8 месеци
Running_Llama3_Anywhere 0f632b3e3d Fix version number in Python example пре 7 месеци
agents cc569ef52b colab links fixed пре 9 месеци
finetuning 57afa0b51e use AutoModel пре 6 месеци
inference 01a20d1e86 Remove max_length from tokenization (#604) пре 9 месеци
Getting_to_know_Llama.ipynb ee34e1be19 typo fix lama -> llama line 127 пре 8 месеци
Prompt_Engineering_with_Llama_3.ipynb cb05f6e01a Add files via upload пре 8 месеци
README.md 6addcb8fa0 move feature table to main readme пре 8 месеци

README.md

Llama-Recipes Quickstart

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Running_Llama_Anywhere notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
  • The Prompt_Engineering_with_Llama notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in finetuning.py which supports these features: