Sanyam Bhutani 5bc4b2727e Move Tool Notebooks před 10 měsíci
..
RAG 24e8962953 Update hello_llama_cloud.ipynb (#584) před 11 měsíci
Running_Llama3_Anywhere 0f632b3e3d Fix version number in Python example před 11 měsíci
agents 5bc4b2727e Move Tool Notebooks před 10 měsíci
finetuning 455a79aa18 small fix před 10 měsíci
inference 5bc4b2727e Move Tool Notebooks před 10 měsíci
Getting_to_know_Llama.ipynb ee34e1be19 typo fix lama -> llama line 127 před 11 měsíci
Prompt_Engineering_with_Llama_3.ipynb cb05f6e01a Add files via upload před 11 měsíci
README.md 6addcb8fa0 move feature table to main readme před 1 rokem

README.md

Llama-Recipes Quickstart

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Running_Llama_Anywhere notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
  • The Prompt_Engineering_with_Llama notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in finetuning.py which supports these features: