Sanyam Bhutani 5bc4b2727e Move Tool Notebooks 10 bulan lalu
..
RAG 24e8962953 Update hello_llama_cloud.ipynb (#584) 11 bulan lalu
Running_Llama3_Anywhere 0f632b3e3d Fix version number in Python example 11 bulan lalu
agents 5bc4b2727e Move Tool Notebooks 10 bulan lalu
finetuning 455a79aa18 small fix 10 bulan lalu
inference 5bc4b2727e Move Tool Notebooks 10 bulan lalu
Getting_to_know_Llama.ipynb ee34e1be19 typo fix lama -> llama line 127 11 bulan lalu
Prompt_Engineering_with_Llama_3.ipynb cb05f6e01a Add files via upload 11 bulan lalu
README.md 6addcb8fa0 move feature table to main readme 1 tahun lalu

README.md

Llama-Recipes Quickstart

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Running_Llama_Anywhere notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
  • The Prompt_Engineering_with_Llama notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in finetuning.py which supports these features: