multi_modal_infer.py 2.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. import os
  2. import sys
  3. import argparse
  4. from PIL import Image as PIL_Image
  5. import torch
  6. from transformers import MllamaForConditionalGeneration, MllamaProcessor
  7. # Constants
  8. DEFAULT_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct"
  9. def load_model_and_processor(model_name: str, hf_token: str):
  10. """
  11. Load the model and processor based on the 11B or 90B model.
  12. """
  13. model = MllamaForConditionalGeneration.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, token=hf_token)
  14. model = model.bfloat16().cuda()
  15. processor = MllamaProcessor.from_pretrained(model_name, token=hf_token)
  16. return model, processor
  17. def process_image(image_path: str) -> PIL_Image.Image:
  18. """
  19. Open and convert an image from the specified path.
  20. """
  21. if not os.path.exists(image_path):
  22. print(f"The image file '{image_path}' does not exist.")
  23. sys.exit(1)
  24. with open(image_path, "rb") as f:
  25. return PIL_Image.open(f).convert("RGB")
  26. def generate_text_from_image(model, processor, image, prompt_text: str, temperature: float, top_p: float):
  27. """
  28. Generate text from an image using the model and processor.
  29. """
  30. conversation = [
  31. {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
  32. ]
  33. prompt = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
  34. inputs = processor(image, prompt, return_tensors="pt").to(model.device)
  35. output = model.generate(**inputs, temperature=temperature, top_p=top_p, max_new_tokens=512)
  36. return processor.decode(output[0])[len(prompt):]
  37. def main(image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str, hf_token: str):
  38. """
  39. Call all the functions.
  40. """
  41. model, processor = load_model_and_processor(model_name, hf_token)
  42. image = process_image(image_path)
  43. result = generate_text_from_image(model, processor, image, prompt_text, temperature, top_p)
  44. print("Generated Text: " + result)
  45. if __name__ == "__main__":
  46. parser = argparse.ArgumentParser(description="Generate text from an image and prompt using the 3.2 MM Llama model.")
  47. parser.add_argument("--image_path", type=str, help="Path to the image file")
  48. parser.add_argument("--prompt_text", type=str, help="Prompt text to describe the image")
  49. parser.add_argument("--temperature", type=float, default=0.7, help="Temperature for generation (default: 0.7)")
  50. parser.add_argument("--top_p", type=float, default=0.9, help="Top p for generation (default: 0.9)")
  51. parser.add_argument("--model_name", type=str, default=DEFAULT_MODEL, help=f"Model name (default: '{DEFAULT_MODEL}')")
  52. parser.add_argument("--hf_token", type=str, required=True, help="Hugging Face token for authentication")
  53. args = parser.parse_args()
  54. main(args.image_path, args.prompt_text, args.temperature, args.top_p, args.model_name, args.hf_token)