| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- import pytest
 
- from functools import partial
 
- from unittest.mock import patch
 
- @pytest.mark.skip_missing_tokenizer()
 
- @patch('llama_recipes.finetuning.train')
 
- @patch('llama_recipes.finetuning.LlamaTokenizer')
 
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 
- @patch('llama_recipes.finetuning.optim.AdamW')
 
- @patch('llama_recipes.finetuning.StepLR')
 
- def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
 
-     from llama_recipes.finetuning import main
 
-     setup_tokenizer(tokenizer)
 
-     BATCH_SIZE = 8
 
-     kwargs = {
 
-         "model_name": "meta-llama/Llama-2-7b-hf",
 
-         "batch_size_training": BATCH_SIZE,
 
-         "val_batch_size": 1,
 
-         "use_peft": False,
 
-         "dataset": "samsum_dataset",
 
-         "batching_strategy": "padding",
 
-         }
 
-     main(**kwargs)
 
-     assert train.call_count == 1
 
-     args, kwargs = train.call_args
 
-     train_dataloader = args[1]
 
-     eval_dataloader = args[2]
 
-     VAL_SAMPLES = 818
 
-     TRAIN_SAMPLES = 14732
 
-     assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
 
-     assert len(eval_dataloader) == VAL_SAMPLES
 
-     batch = next(iter(train_dataloader))
 
-     assert "labels" in batch.keys()
 
-     assert "input_ids" in batch.keys()
 
-     assert "attention_mask" in batch.keys()
 
-     assert batch["labels"][0][268] == -100
 
-     assert batch["labels"][0][269] == 319
 
-     assert batch["input_ids"][0][0] == 1
 
-     assert batch["labels"][0][-1] == 2
 
-     assert batch["input_ids"][0][-1] == 2
 
 
  |