| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- from unittest.mock import patch
 
- import torch
 
- from llama_recipes.utils.train_utils import train
 
- @patch("llama_recipes.utils.train_utils.MemoryTrace")
 
- @patch("llama_recipes.utils.train_utils.nullcontext")
 
- @patch("llama_recipes.utils.train_utils.torch.cuda.amp.GradScaler")
 
- @patch("llama_recipes.utils.train_utils.torch.cuda.amp.autocast")
 
- def test_gradient_accumulation(autocast, scaler, nullcontext, mem_trace, mocker):
 
-     model = mocker.MagicMock(name="model")
 
-     model().loss.__truediv__().detach.return_value = torch.tensor(1)
 
-     mock_tensor = mocker.MagicMock(name="tensor")
 
-     batch = {"input": mock_tensor}
 
-     train_dataloader = [batch, batch, batch, batch, batch]
 
-     eval_dataloader = None
 
-     tokenizer = mocker.MagicMock()
 
-     optimizer = mocker.MagicMock()
 
-     lr_scheduler = mocker.MagicMock()
 
-     gradient_accumulation_steps = 1
 
-     train_config = mocker.MagicMock()
 
-     train_config.enable_fsdp = False
 
-     train_config.use_fp16 = False
 
-     train_config.run_validation = False
 
-     train_config.gradient_clipping = False
 
-     train(
 
-         model,
 
-         train_dataloader,
 
-         eval_dataloader,
 
-         tokenizer,
 
-         optimizer,
 
-         lr_scheduler,
 
-         gradient_accumulation_steps,
 
-         train_config,
 
-     )
 
-     assert optimizer.zero_grad.call_count == 5
 
-     optimizer.zero_grad.reset_mock()
 
-     assert nullcontext.call_count == 5
 
-     nullcontext.reset_mock()
 
-     assert autocast.call_count == 0
 
-     gradient_accumulation_steps = 2
 
-     train_config.use_fp16 = True
 
-     train(
 
-         model,
 
-         train_dataloader,
 
-         eval_dataloader,
 
-         tokenizer,
 
-         optimizer,
 
-         lr_scheduler,
 
-         gradient_accumulation_steps,
 
-         train_config,
 
-     )
 
-     assert optimizer.zero_grad.call_count == 3
 
-     assert nullcontext.call_count == 0
 
-     assert autocast.call_count == 5
 
 
  |