| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import pytestfrom unittest.mock import patch@pytest.mark.skip_missing_tokenizer@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaTokenizer')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_packing(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):    from llama_recipes.finetuning import main    setup_tokenizer(tokenizer)    kwargs = {        "model_name": "meta-llama/Llama-2-7b-hf",        "batch_size_training": 8,        "val_batch_size": 1,        "use_peft": False,        "dataset": "samsum_dataset",        "batching_strategy": "packing",        }    main(**kwargs)    assert train.call_count == 1    args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    assert len(train_dataloader) == 96    assert len(eval_dataloader) == 42    batch = next(iter(train_dataloader))    assert "labels" in batch.keys()    assert "input_ids" in batch.keys()    assert "attention_mask" in batch.keys()    assert batch["labels"][0].size(0) == 4096    assert batch["input_ids"][0].size(0) == 4096    assert batch["attention_mask"][0].size(0) == 4096@pytest.mark.skip_missing_tokenizer@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaTokenizer')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')@patch('llama_recipes.finetuning.setup')@patch('llama_recipes.finetuning.FSDP')@patch('llama_recipes.finetuning.torch.distributed.is_initialized')@patch('llama_recipes.utils.config_utils.dist')def test_distributed_packing(dist, is_initialized, fsdp, setup, step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer):    import os    from llama_recipes.finetuning import main    setup_tokenizer(tokenizer)    rank = 0    os.environ['LOCAL_RANK'] = f'{rank}'    os.environ['RANK'] = f'{rank}'    os.environ['WORLD_SIZE'] = '2'    os.environ['MASTER_ADDR'] = 'localhost'    os.environ['MASTER_PORT'] = '12345'    kwargs = {        "model_name": "meta-llama/Llama-2-7b-hf",        "batch_size_training": 8,        "val_batch_size": 1,        "use_peft": False,        "dataset": "samsum_dataset",        "batching_strategy": "packing",        "enable_fsdp": True        }    is_initialized.return_value = True    dist.get_rank.return_value = rank    dist.get_world_size.return_value = 2    main(**kwargs)    assert train.call_count == 1    args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    assert len(train_dataloader) == 96 //2    assert len(eval_dataloader) == 42 //2
 |