| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771 | """Benchmark online serving throughput.On the server side, run one of the following commands:    vLLM OpenAI API server    vllm serve <your_model> \        --swap-space 16 \        --disable-log-requests    (TGI backend)    ./launch_tgi_server.sh <your_model> <max_batch_total_tokens>On the client side, run:    python benchmarks/benchmark_serving.py \        --backend <backend> \        --model <your_model> \        --dataset-name sharegpt \        --dataset-path <path to dataset> \        --request-rate <request_rate> \ # By default <request_rate> is inf        --num-prompts <num_prompts> # By default <num_prompts> is 1000    when using tgi backend, add        --endpoint /generate_stream    to the end of the command above."""import argparseimport asyncioimport jsonimport osimport randomimport timeimport warningsfrom dataclasses import dataclassfrom datetime import datetimefrom typing import Any, AsyncGenerator, Dict, List, Optional, Tupleimport numpy as npfrom backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,                                  RequestFuncOutput)from tqdm.asyncio import tqdmfrom transformers import PreTrainedTokenizerBasetry:    from vllm.transformers_utils.tokenizer import get_tokenizerexcept ImportError:    from backend_request_func import get_tokenizertry:    from vllm.utils import FlexibleArgumentParserexcept ImportError:    from argparse import ArgumentParser as FlexibleArgumentParser@dataclassclass BenchmarkMetrics:    completed: int    total_input: int    total_output: int    request_throughput: float    input_throughput: float    output_throughput: float    mean_ttft_ms: float    median_ttft_ms: float    std_ttft_ms: float    p99_ttft_ms: float    mean_tpot_ms: float    median_tpot_ms: float    std_tpot_ms: float    p99_tpot_ms: float    mean_itl_ms: float    median_itl_ms: float    std_itl_ms: float    p99_itl_ms: floatdef sample_sharegpt_requests(    dataset_path: str,    num_requests: int,    tokenizer: PreTrainedTokenizerBase,    fixed_output_len: Optional[int] = None,) -> List[Tuple[str, int, int]]:    if fixed_output_len is not None and fixed_output_len < 4:        raise ValueError("output_len too small")    # Load the dataset.    with open(dataset_path) as f:        dataset = json.load(f)    # Filter out the conversations with less than 2 turns.    dataset = [data for data in dataset if len(data["conversations"]) >= 2]    # Only keep the first two turns of each conversation.    dataset = [(data["conversations"][0]["value"],                data["conversations"][1]["value"]) for data in dataset]    # Shuffle the dataset.    random.shuffle(dataset)    # Filter out sequences that are too long or too short    filtered_dataset: List[Tuple[str, int, int]] = []    for i in range(len(dataset)):        if len(filtered_dataset) == num_requests:            break        # Tokenize the prompts and completions.        prompt = dataset[i][0]        prompt_token_ids = tokenizer(prompt).input_ids        completion = dataset[i][1]        completion_token_ids = tokenizer(completion).input_ids        prompt_len = len(prompt_token_ids)        output_len = len(completion_token_ids                         ) if fixed_output_len is None else fixed_output_len        if prompt_len < 4 or output_len < 4:            # Prune too short sequences.            continue        if prompt_len > 1024 or prompt_len + output_len > 2048:            # Prune too long sequences.            continue        filtered_dataset.append((prompt, prompt_len, output_len))    return filtered_datasetdef sample_sonnet_requests(    dataset_path: str,    num_requests: int,    input_len: int,    output_len: int,    prefix_len: int,    tokenizer: PreTrainedTokenizerBase,) -> List[Tuple[str, str, int, int]]:    assert (        input_len > prefix_len    ), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."    # Load the dataset.    with open(dataset_path) as f:        poem_lines = f.readlines()    # Tokenize the poem lines.    poem_token_ids = tokenizer(poem_lines).input_ids    average_poem_len = sum(        len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)    # Base prefix for all requests.    base_prompt = "Pick as many lines as you can from these poem lines:\n"    base_message = [{        "role": "user",        "content": base_prompt,    }]    base_prompt_formatted = tokenizer.apply_chat_template(        base_message, add_generation_prompt=True, tokenize=False)    base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)    assert (        input_len > base_prompt_offset    ), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."    num_input_lines = round(        (input_len - base_prompt_offset) / average_poem_len)    # First approximately `prefix_len` number of tokens in the    # prompt are fixed poem lines.    assert (        prefix_len > base_prompt_offset    ), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."    num_prefix_lines = round(        (prefix_len - base_prompt_offset) / average_poem_len)    prefix_lines = poem_lines[:num_prefix_lines]    # Sample the rest of lines per request.    sampled_requests: List[Tuple[str, int, int]] = []    for _ in range(num_requests):        sampled_lines = "".join(            prefix_lines +            random.sample(poem_lines, num_input_lines - num_prefix_lines))        prompt = f"{base_prompt}{sampled_lines}"        message = [            {                "role": "user",                "content": prompt,            },        ]        prompt_formatted = tokenizer.apply_chat_template(            message, add_generation_prompt=True, tokenize=False)        prompt_len = len(tokenizer(prompt_formatted).input_ids)        sampled_requests.append(            (prompt, prompt_formatted, prompt_len, output_len))    return sampled_requestsdef sample_random_requests(        input_len: int, output_len: int, num_prompts: int, range_ratio: float,        tokenizer: PreTrainedTokenizerBase) -> List[Tuple[str, int, int]]:    input_lens = np.random.randint(        int(input_len * range_ratio),        input_len + 1,        size=num_prompts,    )    output_lens = np.random.randint(        int(output_len * range_ratio),        output_len + 1,        size=num_prompts,    )    offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)    input_requests = []    for i in range(num_prompts):        prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size                                   for j in range(input_lens[i])])        input_requests.append(            (prompt, int(input_lens[i]), int(output_lens[i])))    return input_requestsasync def get_request(    input_requests: List[Tuple[str, int, int]],    request_rate: float,) -> AsyncGenerator[Tuple[str, int, int], None]:    input_requests = iter(input_requests)    for request in input_requests:        yield request        if request_rate == float("inf"):            # If the request rate is infinity, then we don't need to wait.            continue        # Sample the request interval from the exponential distribution.        interval = np.random.exponential(1.0 / request_rate)        # The next request will be sent after the interval.        await asyncio.sleep(interval)def calculate_metrics(    input_requests: List[Tuple[str, int, int]],    outputs: List[RequestFuncOutput],    dur_s: float,    tokenizer: PreTrainedTokenizerBase,) -> Tuple[BenchmarkMetrics, List[int]]:    actual_output_lens: List[int] = []    total_input = 0    completed = 0    itls: List[float] = []    tpots: List[float] = []    ttfts: List[float] = []    for i in range(len(outputs)):        if outputs[i].success:            # We use the tokenizer to count the number of output tokens for all            # serving backends instead of looking at len(outputs[i].itl) since            # multiple output tokens may be bundled together            # Note : this may inflate the output token count slightly            output_len = len(                tokenizer(outputs[i].generated_text,                          add_special_tokens=False).input_ids)            actual_output_lens.append(output_len)            total_input += input_requests[i][1]            if output_len > 1:                tpots.append(                    (outputs[i].latency - outputs[i].ttft) / (output_len - 1))            itls += outputs[i].itl            ttfts.append(outputs[i].ttft)            completed += 1        else:            actual_output_lens.append(0)    if completed == 0:        warnings.warn(            "All requests failed. This is likely due to a misconfiguration "            "on the benchmark arguments.",            stacklevel=2)    metrics = BenchmarkMetrics(        completed=completed,        total_input=total_input,        total_output=sum(actual_output_lens),        request_throughput=completed / dur_s,        input_throughput=total_input / dur_s,        output_throughput=sum(actual_output_lens) / dur_s,        mean_ttft_ms=np.mean(ttfts or 0) *        1000,  # ttfts is empty if streaming is not supported by backend        median_ttft_ms=np.median(ttfts or 0) * 1000,        std_ttft_ms=np.std(ttfts or 0) * 1000,        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,        mean_tpot_ms=np.mean(tpots or 0) * 1000,        median_tpot_ms=np.median(tpots or 0) * 1000,        std_tpot_ms=np.std(tpots or 0) * 1000,        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,        mean_itl_ms=np.mean(itls or 0) * 1000,        median_itl_ms=np.median(itls or 0) * 1000,        std_itl_ms=np.std(itls or 0) * 1000,        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,    )    return metrics, actual_output_lensasync def benchmark(    backend: str,    api_url: str,    base_url: str,    model_id: str,    tokenizer: PreTrainedTokenizerBase,    input_requests: List[Tuple[str, int, int]],    best_of: int,    use_beam_search: bool,    request_rate: float,    disable_tqdm: bool,    profile: bool,):    if backend in ASYNC_REQUEST_FUNCS:        request_func = ASYNC_REQUEST_FUNCS[backend]    else:        raise ValueError(f"Unknown backend: {backend}")    print("Starting initial single prompt test run...")    test_prompt, test_prompt_len, test_output_len = input_requests[0]    test_input = RequestFuncInput(        model=model_id,        prompt=test_prompt,        api_url=api_url,        prompt_len=test_prompt_len,        output_len=test_output_len,        best_of=best_of,        use_beam_search=use_beam_search,    )    test_output = await request_func(request_func_input=test_input)    if not test_output.success:        raise ValueError(            "Initial test run failed - Please make sure benchmark arguments "            f"are correctly specified. Error: {test_output.error}")    else:        print("Initial test run completed. Starting main benchmark run...")    if profile:        print("Starting profiler...")        profile_input = RequestFuncInput(            model=model_id,            prompt=test_prompt,            api_url=base_url + "/start_profile",            prompt_len=test_prompt_len,            output_len=test_output_len,            best_of=best_of,            use_beam_search=use_beam_search,        )        profile_output = await request_func(request_func_input=profile_input)        if profile_output.success:            print("Profiler started")    print(f"Traffic request rate: {request_rate}")    pbar = None if disable_tqdm else tqdm(total=len(input_requests))    benchmark_start_time = time.perf_counter()    tasks: List[asyncio.Task] = []    async for request in get_request(input_requests, request_rate):        prompt, prompt_len, output_len = request        request_func_input = RequestFuncInput(            model=model_id,            prompt=prompt,            api_url=api_url,            prompt_len=prompt_len,            output_len=output_len,            best_of=best_of,            use_beam_search=use_beam_search,        )        tasks.append(            asyncio.create_task(                request_func(request_func_input=request_func_input,                             pbar=pbar)))    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)    if profile:        print("Stopping profiler...")        profile_input = RequestFuncInput(            model=model_id,            prompt=test_prompt,            api_url=base_url + "/stop_profile",            prompt_len=test_prompt_len,            output_len=test_output_len,            best_of=best_of,            use_beam_search=use_beam_search,        )        profile_output = await request_func(request_func_input=profile_input)        if profile_output.success:            print("Profiler stopped")    if pbar is not None:        pbar.close()    benchmark_duration = time.perf_counter() - benchmark_start_time    metrics, actual_output_lens = calculate_metrics(        input_requests=input_requests,        outputs=outputs,        dur_s=benchmark_duration,        tokenizer=tokenizer,    )    print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))    print("{:<40} {:<10.2f}".format("Benchmark duration (s):",                                    benchmark_duration))    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))    print("{:<40} {:<10}".format("Total generated tokens:",                                 metrics.total_output))    print("{:<40} {:<10.2f}".format("Request throughput (req/s):",                                    metrics.request_throughput))    print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):",                                    metrics.input_throughput))    print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",                                    metrics.output_throughput))    print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-'))    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))    print("{:<40} {:<10.2f}".format("Median TTFT (ms):",                                    metrics.median_ttft_ms))    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))    print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)',                               n=50,                               c='-'))    print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))    print("{:<40} {:<10.2f}".format("Median TPOT (ms):",                                    metrics.median_tpot_ms))    print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))    print("{s:{c}^{n}}".format(s='Inter-token Latency', n=50, c='-'))    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))    print("=" * 50)    result = {        "duration": benchmark_duration,        "completed": metrics.completed,        "total_input_tokens": metrics.total_input,        "total_output_tokens": metrics.total_output,        "request_throughput": metrics.request_throughput,        "input_throughput": metrics.input_throughput,        "output_throughput": metrics.output_throughput,        "mean_ttft_ms": metrics.mean_ttft_ms,        "median_ttft_ms": metrics.median_ttft_ms,        "std_ttft_ms": metrics.std_ttft_ms,        "p99_ttft_ms": metrics.p99_ttft_ms,        "mean_tpot_ms": metrics.mean_tpot_ms,        "median_tpot_ms": metrics.median_tpot_ms,        "std_tpot_ms": metrics.std_tpot_ms,        "p99_tpot_ms": metrics.p99_tpot_ms,        "mean_itl_ms": metrics.mean_itl_ms,        "median_itl_ms": metrics.median_itl_ms,        "std_itl_ms": metrics.std_itl_ms,        "p99_itl_ms": metrics.p99_itl_ms,        "input_lens": [output.prompt_len for output in outputs],        "output_lens": actual_output_lens,        "ttfts": [output.ttft for output in outputs],        "itls": [output.itl for output in outputs],        "generated_texts": [output.generated_text for output in outputs],        "errors": [output.error for output in outputs],    }    return resultdef main(args: argparse.Namespace):    print(args)    random.seed(args.seed)    np.random.seed(args.seed)    backend = args.backend    model_id = args.model    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model    if args.base_url is not None:        api_url = f"{args.base_url}{args.endpoint}"        base_url = f"{args.base_url}"    else:        api_url = f"http://{args.host}:{args.port}{args.endpoint}"        base_url = f"http://{args.host}:{args.port}"    tokenizer = get_tokenizer(tokenizer_id,                              trust_remote_code=args.trust_remote_code)    if args.dataset is not None:        warnings.warn(            "The '--dataset' argument will be deprecated in the next "            "release. Please use '--dataset-name' and "            "'--dataset-path' in the future runs.",            stacklevel=2)        input_requests = sample_sharegpt_requests(            dataset_path=args.dataset,            num_requests=args.num_prompts,            tokenizer=tokenizer,            fixed_output_len=args.sharegpt_output_len,        )    elif args.dataset_name == "sharegpt":        input_requests = sample_sharegpt_requests(            dataset_path=args.dataset_path,            num_requests=args.num_prompts,            tokenizer=tokenizer,            fixed_output_len=args.sharegpt_output_len,        )    elif args.dataset_name == "sonnet":        # Do not format the prompt, pass to message directly        if args.backend == "openai-chat":            input_requests = sample_sonnet_requests(                dataset_path=args.dataset_path,                num_requests=args.num_prompts,                input_len=args.sonnet_input_len,                output_len=args.sonnet_output_len,                prefix_len=args.sonnet_prefix_len,                tokenizer=tokenizer,            )            input_requests = [(prompt, prompt_len, output_len)                              for prompt, prompt_formatted, prompt_len,                              output_len in input_requests]        else:            assert (                tokenizer.chat_template or tokenizer.default_chat_template            ), "Tokenizer/model must have chat template for sonnet dataset."            input_requests = sample_sonnet_requests(                dataset_path=args.dataset_path,                num_requests=args.num_prompts,                input_len=args.sonnet_input_len,                output_len=args.sonnet_output_len,                prefix_len=args.sonnet_prefix_len,                tokenizer=tokenizer,            )            input_requests = [(prompt_formatted, prompt_len, output_len)                              for prompt, prompt_formatted, prompt_len,                              output_len in input_requests]    elif args.dataset_name == "random":        input_requests = sample_random_requests(            input_len=args.random_input_len,            output_len=args.random_output_len,            num_prompts=args.num_prompts,            range_ratio=args.random_range_ratio,            tokenizer=tokenizer,        )    else:        raise ValueError(f"Unknown dataset: {args.dataset_name}")    benchmark_result = asyncio.run(        benchmark(            backend=backend,            api_url=api_url,            base_url=base_url,            model_id=model_id,            tokenizer=tokenizer,            input_requests=input_requests,            best_of=args.best_of,            use_beam_search=args.use_beam_search,            request_rate=args.request_rate,            disable_tqdm=args.disable_tqdm,            profile=args.profile,        ))    # Save config and results to json    if args.save_result:        result_json: Dict[str, Any] = {}        # Setup        current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")        result_json["date"] = current_dt        result_json["backend"] = backend        result_json["model_id"] = model_id        result_json["tokenizer_id"] = tokenizer_id        result_json["best_of"] = args.best_of        result_json["use_beam_search"] = args.use_beam_search        result_json["num_prompts"] = args.num_prompts        # Metadata        if args.metadata:            for item in args.metadata:                if "=" in item:                    kvstring = item.split("=")                    result_json[kvstring[0].strip()] = kvstring[1].strip()                else:                    raise ValueError(                        "Invalid metadata format. Please use KEY=VALUE format."                    )        # Traffic        result_json["request_rate"] = (            args.request_rate if args.request_rate < float("inf") else "inf")        # Merge with benchmark result        result_json = {**result_json, **benchmark_result}        # Save to file        base_model_id = model_id.split("/")[-1]        file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"  #noqa        if args.result_filename:            file_name = args.result_filename        if args.result_dir:            file_name = os.path.join(args.result_dir, file_name)        with open(file_name, "w") as outfile:            json.dump(result_json, outfile)if __name__ == "__main__":    parser = FlexibleArgumentParser(        description="Benchmark the online serving throughput.")    parser.add_argument(        "--backend",        type=str,        default="vllm",        choices=list(ASYNC_REQUEST_FUNCS.keys()),    )    parser.add_argument(        "--base-url",        type=str,        default=None,        help="Server or API base url if not using http host and port.",    )    parser.add_argument("--host", type=str, default="localhost")    parser.add_argument("--port", type=int, default=8000)    parser.add_argument(        "--endpoint",        type=str,        default="/v1/completions",        help="API endpoint.",    )    parser.add_argument(        "--dataset",        type=str,        default=None,        help="Path to the ShareGPT dataset, will be deprecated in the "        "next release.",    )    parser.add_argument(        "--dataset-name",        type=str,        default="sharegpt",        choices=["sharegpt", "sonnet", "random"],        help="Name of the dataset to benchmark on.",    )    parser.add_argument("--dataset-path",                        type=str,                        default=None,                        help="Path to the dataset.")    parser.add_argument(        "--model",        type=str,        required=True,        help="Name of the model.",    )    parser.add_argument(        "--tokenizer",        type=str,        help=        "Name or path of the tokenizer, if not using the default tokenizer.",  # noqa: E501    )    parser.add_argument(        "--best-of",        type=int,        default=1,        help="Generates `best_of` sequences per prompt and "        "returns the best one.",    )    parser.add_argument("--use-beam-search", action="store_true")    parser.add_argument(        "--num-prompts",        type=int,        default=1000,        help="Number of prompts to process.",    )    parser.add_argument(        "--sharegpt-output-len",        type=int,        default=None,        help="Output length for each request. Overrides the output length "        "from the ShareGPT dataset.")    parser.add_argument(        "--sonnet-input-len",        type=int,        default=550,        help=        "Number of input tokens per request, used only for sonnet dataset.",    )    parser.add_argument(        "--sonnet-output-len",        type=int,        default=150,        help=        "Number of output tokens per request, used only for sonnet dataset.",    )    parser.add_argument(        "--sonnet-prefix-len",        type=int,        default=200,        help=        "Number of prefix tokens per request, used only for sonnet dataset.",    )    parser.add_argument(        "--random-input-len",        type=int,        default=1024,        help=        "Number of input tokens per request, used only for random sampling.",    )    parser.add_argument(        "--random-output-len",        type=int,        default=128,        help=        "Number of output tokens per request, used only for random sampling.",    )    parser.add_argument(        "--random-range-ratio",        type=float,        default=1.0,        help="Range of sampled ratio of input/output length, "        "used only for random sampling.",    )    parser.add_argument(        "--request-rate",        type=float,        default=float("inf"),        help="Number of requests per second. If this is inf, "        "then all the requests are sent at time 0. "        "Otherwise, we use Poisson process to synthesize "        "the request arrival times.",    )    parser.add_argument("--seed", type=int, default=0)    parser.add_argument(        "--trust-remote-code",        action="store_true",        help="Trust remote code from huggingface",    )    parser.add_argument(        "--disable-tqdm",        action="store_true",        help="Specify to disable tqdm progress bar.",    )    parser.add_argument(        "--profile",        action="store_true",        help="Use Torch Profiler. The endpoint must be launched with "        "VLLM_TORCH_PROFILER_DIR to enable profiler.",    )    parser.add_argument(        "--save-result",        action="store_true",        help="Specify to save benchmark results to a json file",    )    parser.add_argument(        "--metadata",        metavar="KEY=VALUE",        nargs="*",        help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "        "for metadata of this run to be saved in the result JSON file "        "for record keeping purposes.",    )    parser.add_argument(        "--result-dir",        type=str,        default=None,        help="Specify directory to save benchmark json results."        "If not specified, results are saved in the current directory.",    )    parser.add_argument(        "--result-filename",        type=str,        default=None,        help="Specify the filename to save benchmark json results."        "If not specified, results will be saved in "        "{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"        " format.",    )    args = parser.parse_args()    main(args)
 |