| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- import argparse
 
- import json
 
- import logging
 
- import os
 
- import re
 
- import sys
 
- from pathlib import Path
 
- import numpy as np
 
- import lm_eval
 
- from lm_eval import tasks
 
- from lm_eval.utils import make_table
 
- def _handle_non_serializable(o):
 
-     if isinstance(o, np.int64) or isinstance(o, np.int32):
 
-         return int(o)
 
-     elif isinstance(o, set):
 
-         return list(o)
 
-     else:
 
-         return str(o)
 
- def setup_logging(verbosity):
 
-     logging.basicConfig(
 
-         level=verbosity.upper(), format="%(asctime)s - %(levelname)s - %(message)s"
 
-     )
 
-     return logging.getLogger(__name__)
 
- def handle_output(args, results, logger):
 
-     if not args.output_path:
 
-         if args.log_samples:
 
-             logger.error("Specify --output_path for logging samples.")
 
-             sys.exit(1)
 
-         logger.info(json.dumps(results, indent=2, default=_handle_non_serializable))
 
-         return
 
-     path = Path(args.output_path)
 
-     if path.is_file() or path.with_name("results.json").is_file():
 
-         logger.warning(f"File already exists at {path}. Results will be overwritten.")
 
-     output_dir = path.parent if path.suffix in (".json", ".jsonl") else path
 
-     output_dir.mkdir(parents=True, exist_ok=True)
 
-     results_str = json.dumps(results, indent=2, default=_handle_non_serializable)
 
-     if args.show_config:
 
-         logger.info(results_str)
 
-     file_path = os.path.join(args.output_path, "results.json")
 
-     with open(file_path , "w", encoding="utf-8") as f:
 
-         f.write(results_str)
 
-     if args.log_samples:
 
-         samples = results.pop("samples", {})
 
-         for task_name, _ in results.get("configs", {}).items():
 
-             output_name = re.sub(r"/|=", "__", args.model_args) + "_" + task_name
 
-             sample_file = output_dir.joinpath(f"{output_name}.jsonl")
 
-             sample_data = json.dumps(
 
-                 samples.get(task_name, {}), indent=2, default=_handle_non_serializable
 
-             )
 
-             sample_file.write_text(sample_data, encoding="utf-8")
 
-     batch_sizes = ",".join(map(str, results.get("config", {}).get("batch_sizes", [])))
 
-     summary = f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
 
-     logger.info(summary)
 
-     logger.info(make_table(results))
 
-     if "groups" in results:
 
-         logger.info(make_table(results, "groups"))
 
- def load_tasks(args):
 
-     if args.open_llm_leaderboard_tasks:
 
-         current_dir = os.getcwd()
 
-         config_dir = os.path.join(current_dir, "open_llm_leaderboard")
 
-         task_manager = tasks.TaskManager(include_path=config_dir)
 
-         return task_manager, [
 
-             "arc_challenge_25_shot",
 
-             "hellaswag_10_shot",
 
-             "truthfulqa_mc2",
 
-             "winogrande_5_shot",
 
-             "gsm8k",
 
-             "mmlu",
 
-         ]
 
-     return None, args.tasks.split(",") if args.tasks else []
 
- def parse_eval_args():
 
-     parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
 
-     parser.add_argument(
 
-         "--model", "-m", default="hf", help="Name of model, e.g., `hf`."
 
-     )
 
-     parser.add_argument(
 
-         "--tasks",
 
-         "-t",
 
-         default=None,
 
-         help="Comma-separated list of tasks, or 'list' to display available tasks.",
 
-     )
 
-     parser.add_argument(
 
-         "--model_args",
 
-         "-a",
 
-         default="",
 
-         help="Comma-separated string arguments for model, e.g., `pretrained=EleutherAI/pythia-160m`.",
 
-     )
 
-     parser.add_argument(
 
-         "--open_llm_leaderboard_tasks",
 
-         "-oplm",
 
-         action="store_true",
 
-         default=False,
 
-         help="Choose the list of tasks with specification in HF open LLM-leaderboard.",
 
-     )
 
-     parser.add_argument(
 
-         "--num_fewshot",
 
-         "-f",
 
-         type=int,
 
-         default=None,
 
-         help="Number of examples in few-shot context.",
 
-     )
 
-     parser.add_argument(
 
-         "--batch_size",
 
-         "-b",
 
-         default=1,
 
-         help="Batch size, can be 'auto', 'auto:N', or an integer.",
 
-     )
 
-     parser.add_argument(
 
-         "--max_batch_size",
 
-         type=int,
 
-         default=None,
 
-         help="Maximal batch size with 'auto' batch size.",
 
-     )
 
-     parser.add_argument(
 
-         "--device", default=None, help="Device for evaluation, e.g., 'cuda', 'cpu'."
 
-     )
 
-     parser.add_argument(
 
-         "--output_path", "-o", type=str, default=None, help="Path for saving results."
 
-     )
 
-     parser.add_argument(
 
-         "--limit",
 
-         "-L",
 
-         type=float,
 
-         default=None,
 
-         help="Limit number of examples per task.",
 
-     )
 
-     parser.add_argument(
 
-         "--use_cache", "-c", default=None, help="Path to cache db file, if used."
 
-     )
 
-     parser.add_argument(
 
-         "--verbosity",
 
-         "-v",
 
-         default="INFO",
 
-         help="Logging level: CRITICAL, ERROR, WARNING, INFO, DEBUG.",
 
-     )
 
-     parser.add_argument(
 
-         "--gen_kwargs",
 
-         default=None,
 
-         help="Generation kwargs for tasks that support it.",
 
-     )
 
-     parser.add_argument(
 
-         "--check_integrity",
 
-         action="store_true",
 
-         help="Whether to run the relevant part of the test suite for the tasks.",
 
-     )
 
-     parser.add_argument(
 
-         "--write_out",
 
-         "-w",
 
-         action="store_true",
 
-         default=False,
 
-         help="Prints the prompt for the first few documents.",
 
-     )
 
-     parser.add_argument(
 
-         "--log_samples",
 
-         "-s",
 
-         action="store_true",
 
-         default=False,
 
-         help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis.",
 
-     )
 
-     parser.add_argument(
 
-         "--show_config",
 
-         action="store_true",
 
-         default=False,
 
-         help="If True, shows the full config of all tasks at the end of the evaluation.",
 
-     )
 
-     parser.add_argument(
 
-         "--include_path",
 
-         type=str,
 
-         default=None,
 
-         help="Additional path to include if there are external tasks.",
 
-     )
 
-     return parser.parse_args()
 
- def evaluate_model(args):
 
-     try:
 
-         task_manager, task_list = load_tasks(args)
 
-         # Customized model such as Quantized model etc.
 
-         # In case you are working with a custom model, you can use the following guide to add it here:
 
-         # https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage
 
-         # Evaluate
 
-         results = lm_eval.simple_evaluate(
 
-             model=args.model,
 
-             model_args=args.model_args,
 
-             tasks=task_list,
 
-             num_fewshot=args.num_fewshot,
 
-             batch_size=args.batch_size,
 
-             max_batch_size=args.max_batch_size,
 
-             device=args.device,
 
-             use_cache=args.use_cache,
 
-             limit=args.limit,
 
-             check_integrity=args.check_integrity,
 
-             write_out=args.write_out,
 
-             log_samples=args.log_samples,
 
-             gen_kwargs=args.gen_kwargs,
 
-             task_manager=task_manager,
 
-         )
 
-         handle_output(args, results, logger)
 
-     except Exception as e:
 
-         logger.error(f"An error occurred during evaluation: {e}")
 
-         sys.exit(1)
 
- if __name__ == "__main__":
 
-     args = parse_eval_args()
 
-     logger = setup_logging(args.verbosity)
 
-     evaluate_model(args)
 
 
  |