| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import pytestfrom unittest.mock import patchfrom transformers import LlamaTokenizerEXPECTED_RESULTS={    "meta-llama/Llama-2-7b-hf":{        "example_1": "[INST] Who made Berlin [/INST] dunno",        "example_2": "[INST] Quiero preparar una pizza de pepperoni, puedes darme los pasos para hacerla? [/INST] Claro!",    },    "meta-llama/Meta-Llama-3-8B":{        "example_1": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nWho made Berlin<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\ndunno<|eot_id|><|end_of_text|>",        "example_2": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow to start learning guitar and become a master at it?",    },}def check_padded_entry(batch, tokenizer):    seq_len = sum(batch["attention_mask"][0])    assert seq_len < len(batch["attention_mask"][0])    if tokenizer.vocab_size >= 128000:        END_OF_TEXT_ID = 128009    else:        END_OF_TEXT_ID = tokenizer.eos_token_id    assert batch["labels"][0][0] == -100    assert batch["labels"][0][seq_len-1] == END_OF_TEXT_ID    assert batch["labels"][0][-1] == -100    assert batch["input_ids"][0][0] == tokenizer.bos_token_id    assert batch["input_ids"][0][-1] == tokenizer.eos_token_id@pytest.mark.skip_missing_tokenizer@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.AutoTokenizer')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):    from llama_recipes.finetuning import main    setup_tokenizer(tokenizer)    skip_special_tokens = llama_version == "meta-llama/Llama-2-7b-hf"    kwargs = {        "dataset": "custom_dataset",        "model_name": llama_version,        "custom_dataset.file": "recipes/finetuning/datasets/custom_dataset.py",        "custom_dataset.train_split": "validation",        "batch_size_training": 2,        "val_batch_size": 4,        "use_peft": False,        "batching_strategy": "padding"        }    main(**kwargs)    assert train.call_count == 1    args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    tokenizer = args[3]    assert len(train_dataloader) == 1120    assert len(eval_dataloader) == 1120 //2    it = iter(eval_dataloader)    batch = next(it)    STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=skip_special_tokens)    assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_1"])    assert batch["input_ids"].size(0) == 4    assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())    check_padded_entry(batch, tokenizer)    it = iter(train_dataloader)    next(it)    batch = next(it)    STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=skip_special_tokens)    assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_2"])    assert batch["input_ids"].size(0) == 2    assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())    check_padded_entry(batch, tokenizer)@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker):    from llama_recipes.finetuning import main    tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})    kwargs = {        "dataset": "custom_dataset",        "custom_dataset.file": "recipes/finetuning/datasets/custom_dataset.py:get_unknown_dataset",        "batch_size_training": 1,        "use_peft": False,        }    with pytest.raises(AttributeError):        main(**kwargs)
 |