| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import fireimport osimport sysimport timeimport torchfrom transformers import AutoTokenizerfrom llama_recipes.inference.safety_utils import get_safety_checkerfrom llama_recipes.inference.model_utils import load_model, load_peft_modeldef handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt):    """    Handles the output based on the safety check of both user and system prompts.    Parameters:    - are_safe_user_prompt (bool): Indicates whether the user prompt is safe.    - user_prompt (str): The user prompt that was checked for safety.    - safety_results_user_prompt (list of tuples): A list of tuples for the user prompt containing the method, safety status, and safety report.    - are_safe_system_prompt (bool): Indicates whether the system prompt is safe.    - system_prompt (str): The system prompt that was checked for safety.    - safety_results_system_prompt (list of tuples): A list of tuples for the system prompt containing the method, safety status, and safety report.    """    def print_safety_results(are_safe_prompt, prompt, safety_results, prompt_type="User"):        """        Prints the safety results for a prompt.        Parameters:        - are_safe_prompt (bool): Indicates whether the prompt is safe.        - prompt (str): The prompt that was checked for safety.        - safety_results (list of tuples): A list of tuples containing the method, safety status, and safety report.        - prompt_type (str): The type of prompt (User/System).        """        if are_safe_prompt:            print(f"{prompt_type} prompt deemed safe.")            print(f"{prompt_type} prompt:\n{prompt}")        else:            print(f"{prompt_type} prompt deemed unsafe.")            for method, is_safe, report in safety_results:                if not is_safe:                    print(method)                    print(report)            print(f"Skipping the inference as the {prompt_type.lower()} prompt is not safe.")            sys.exit(1)    # Check user prompt    print_safety_results(are_safe_user_prompt, user_prompt, safety_results_user_prompt, "User")        # Check system prompt    print_safety_results(are_safe_system_prompt, system_prompt, safety_results_system_prompt, "System")def main(    model_name,    peft_model: str=None,    quantization: bool=False,    max_new_tokens =100, #The maximum numbers of tokens to generate    seed: int=42, #seed value for reproducibility    do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.    min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens    use_cache: bool=False,  #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.    top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.    temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.    top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.    repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.    length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.     enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api    enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs    enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5    enable_llamaguard_content_safety: bool=False, # Enable safety check with Llama-Guard    use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels    **kwargs):    system_prompt = input("Please insert your system prompt: ")    user_prompt = input("Please insert your prompt: ")    chat = [   {"role": "system", "content": system_prompt},   {"role": "user", "content": user_prompt},    ]           # Set the seeds for reproducibility    torch.cuda.manual_seed(seed)    torch.manual_seed(seed)        model = load_model(model_name, quantization, use_fast_kernels)    if peft_model:        model = load_peft_model(model, peft_model)    model.eval()            tokenizer = AutoTokenizer.from_pretrained(model_name)    safety_checker = get_safety_checker(enable_azure_content_safety,                                        enable_sensitive_topics,                                        enable_salesforce_content_safety,                                        enable_llamaguard_content_safety,                                        )    # Safety check of the user prompt    safety_results_user_prompt = [check(user_prompt) for check in safety_checker]    safety_results_system_prompt = [check(system_prompt) for check in safety_checker]    are_safe_user_prompt = all([r[1] for r in safety_results_user_prompt])    are_safe_system_prompt = all([r[1] for r in safety_results_system_prompt])    handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt)            inputs = tokenizer.apply_chat_template(chat, return_tensors="pt").to("cuda")    start = time.perf_counter()    with torch.no_grad():        outputs = model.generate(            input_ids=inputs,            max_new_tokens=max_new_tokens,            do_sample=do_sample,            top_p=top_p,            temperature=temperature,            min_length=min_length,            use_cache=use_cache,            top_k=top_k,            repetition_penalty=repetition_penalty,            length_penalty=length_penalty,            **kwargs         )    e2e_inference_time = (time.perf_counter()-start)*1000    print(f"the inference time is {e2e_inference_time} ms")    output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)        # Safety check of the model output    safety_results = [check(output_text) for check in safety_checker]    are_safe = all([r[1] for r in safety_results])    if are_safe:        print("User input and model output deemed safe.")        print(f"Model output:\n{output_text}")    else:        print("Model output deemed unsafe.")        for method, is_safe, report in safety_results:            if not is_safe:                print(method)                print(report)                if __name__ == "__main__":    fire.Fire(main)
 |