| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.from tqdm import tqdmfrom itertools import chainfrom torch.utils.data import Datasetclass Concatenator(object):    def __init__(self, chunk_size=2048):        self.chunk_size=chunk_size        self.residual = {"input_ids": [], "attention_mask": []}            def __call__(self, batch):        concatenated_samples = {            k: v + list(chain(*batch[k])) for k, v in self.residual.items()        }        total_length = len(concatenated_samples[list(concatenated_samples.keys())[0]])        if total_length >= self.chunk_size:            chunk_num = total_length // self.chunk_size            result = {                k: [                    v[i : i + self.chunk_size]                    for i in range(0, chunk_num * self.chunk_size, self.chunk_size)                ]                for k, v in concatenated_samples.items()            }            self.residual = {                k: v[(chunk_num * self.chunk_size) :]                for k, v in concatenated_samples.items()            }        else:            result = concatenated_samples            self.residual = {k: [] for k in concatenated_samples.keys()}        result["labels"] = result["input_ids"].copy()        return resultclass ConcatDataset(Dataset):    def __init__(self, dataset, chunk_size=4096):        self.dataset = dataset        self.chunk_size = chunk_size                self.samples = []                buffer = {            "input_ids": [],            "attention_mask": [],            "labels": [],            }                for sample in tqdm(self.dataset, desc="Preprocessing dataset"):            buffer = {k: v + sample[k] for k,v in buffer.items()}                        while len(next(iter(buffer.values()))) > self.chunk_size:                self.samples.append({k: v[:self.chunk_size] for k,v in buffer.items()})                buffer = {k: v[self.chunk_size:] for k,v in buffer.items()}                    def __getitem__(self, idx):        return self.samples[idx]        def __len__(self):        return len(self.samples)
 |