test_samsum_datasets.py 2.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import pytest
  4. from dataclasses import dataclass
  5. from functools import partial
  6. from unittest.mock import patch
  7. from datasets import load_dataset
  8. @dataclass
  9. class Config:
  10. model_type: str = "llama"
  11. try:
  12. load_dataset("Samsung/samsum")
  13. SAMSUM_UNAVAILABLE = False
  14. except ValueError:
  15. SAMSUM_UNAVAILABLE = True
  16. @pytest.mark.skipif(SAMSUM_UNAVAILABLE, reason="Samsum dataset is unavailable")
  17. @pytest.mark.skip_missing_tokenizer
  18. @patch('llama_cookbook.finetuning.train')
  19. @patch('llama_cookbook.finetuning.AutoTokenizer')
  20. @patch("llama_cookbook.finetuning.AutoConfig.from_pretrained")
  21. @patch("llama_cookbook.finetuning.AutoProcessor")
  22. @patch("llama_cookbook.finetuning.MllamaForConditionalGeneration.from_pretrained")
  23. @patch('llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained')
  24. @patch('llama_cookbook.finetuning.optim.AdamW')
  25. @patch('llama_cookbook.finetuning.StepLR')
  26. def test_samsum_dataset(
  27. step_lr,
  28. optimizer,
  29. get_model,
  30. get_mmodel,
  31. processor,
  32. get_config,
  33. tokenizer,
  34. train,
  35. mocker,
  36. setup_tokenizer,
  37. llama_version,
  38. ):
  39. from llama_cookbook.finetuning import main
  40. setup_tokenizer(tokenizer)
  41. get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
  42. get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
  43. get_config.return_value = Config()
  44. BATCH_SIZE = 8
  45. kwargs = {
  46. "model_name": llama_version,
  47. "batch_size_training": BATCH_SIZE,
  48. "val_batch_size": 1,
  49. "use_peft": False,
  50. "dataset": "samsum_dataset",
  51. "batching_strategy": "padding",
  52. }
  53. main(**kwargs)
  54. assert train.call_count == 1
  55. args, kwargs = train.call_args
  56. train_dataloader = args[1]
  57. eval_dataloader = args[2]
  58. token = args[3]
  59. VAL_SAMPLES = 818
  60. TRAIN_SAMPLES = 14732
  61. assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
  62. assert len(eval_dataloader) == VAL_SAMPLES
  63. batch = next(iter(train_dataloader))
  64. assert "labels" in batch.keys()
  65. assert "input_ids" in batch.keys()
  66. assert "attention_mask" in batch.keys()
  67. assert batch["input_ids"][0][0] == token.bos_token_id
  68. assert batch["labels"][0][-1] == token.eos_token_id
  69. assert batch["input_ids"][0][-1] == token.eos_token_id