123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from dataclasses import dataclass
- from functools import partial
- from unittest.mock import patch
- from datasets import load_dataset
- @dataclass
- class Config:
- model_type: str = "llama"
- try:
- load_dataset("Samsung/samsum")
- SAMSUM_UNAVAILABLE = False
- except ValueError:
- SAMSUM_UNAVAILABLE = True
- @pytest.mark.skipif(SAMSUM_UNAVAILABLE, reason="Samsum dataset is unavailable")
- @pytest.mark.skip_missing_tokenizer
- @patch('llama_cookbook.finetuning.train')
- @patch('llama_cookbook.finetuning.AutoTokenizer')
- @patch("llama_cookbook.finetuning.AutoConfig.from_pretrained")
- @patch("llama_cookbook.finetuning.AutoProcessor")
- @patch("llama_cookbook.finetuning.MllamaForConditionalGeneration.from_pretrained")
- @patch('llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_cookbook.finetuning.optim.AdamW')
- @patch('llama_cookbook.finetuning.StepLR')
- def test_samsum_dataset(
- step_lr,
- optimizer,
- get_model,
- get_mmodel,
- processor,
- get_config,
- tokenizer,
- train,
- mocker,
- setup_tokenizer,
- llama_version,
- ):
- from llama_cookbook.finetuning import main
- setup_tokenizer(tokenizer)
- get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
- get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
- get_config.return_value = Config()
- BATCH_SIZE = 8
- kwargs = {
- "model_name": llama_version,
- "batch_size_training": BATCH_SIZE,
- "val_batch_size": 1,
- "use_peft": False,
- "dataset": "samsum_dataset",
- "batching_strategy": "padding",
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- token = args[3]
- VAL_SAMPLES = 818
- TRAIN_SAMPLES = 14732
- assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
- assert len(eval_dataloader) == VAL_SAMPLES
- batch = next(iter(train_dataloader))
- assert "labels" in batch.keys()
- assert "input_ids" in batch.keys()
- assert "attention_mask" in batch.keys()
- assert batch["input_ids"][0][0] == token.bos_token_id
- assert batch["labels"][0][-1] == token.eos_token_id
- assert batch["input_ids"][0][-1] == token.eos_token_id
|