123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 3 Community License Agreement.
- import logging
- import evaluate
- import argparse
- from config import load_config
- import json
- from langchain_openai import ChatOpenAI
- from langchain_community.embeddings import HuggingFaceEmbeddings
- from langchain_community.vectorstores import FAISS
- from langchain.text_splitter import RecursiveCharacterTextSplitter
- from langchain_community.vectorstores.utils import DistanceStrategy
- from datetime import datetime
- from langchain_community.document_loaders import DirectoryLoader
- import re
- import string
- import pandas as pd
- def generate_answers_model_only(model_name,question_list,api_url="http://localhost:8000/v1",key="EMPTY"):
- # Use langchain to load the documents from data directory
- # Load the RAFT model
- llm = ChatOpenAI(
- openai_api_key=key,
- openai_api_base=api_url,
- model_name=model_name,
- temperature=0.0,
- max_tokens=1000
- )
- all_tasks = [api_config['eval_prompt_template'].format(question=question) for question in question_list]
- generated_answers = llm.batch(all_tasks)
- generated_answers = [ item.content for item in generated_answers]
- if len(generated_answers) == 0:
- logging.error("No model answers generated. Please check the input context or model configuration in ",model_name)
- return []
- return clean_text_list(generated_answers)
- def format_docs_raft(docs):
- context = ""
- for doc in docs:
- context += "\n<DOCUMENT>" + str(doc.page_content) + "</DOCUMENT>\n"
- return context
- def build_retriever(api_config,embedding_model_name,retrieved_docs_num=5):
- # Use langchain to load the documents from data directory
- loader = DirectoryLoader(api_config['data_dir'])
- docs = loader.load()
- # Split the document into chunks with a specified chunk size
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=api_config["chunk_size"],chunk_overlap=int(api_config["chunk_size"] / 10),separators= ["----------","\n\n", "\n", " ", ""],strip_whitespace=True)
- docs_processed = text_splitter.split_documents(docs)
- # Remove duplicates
- unique_texts = {}
- docs_processed_unique = []
- for doc in docs_processed:
- if doc.page_content not in unique_texts:
- unique_texts[doc.page_content] = True
- docs_processed_unique.append(doc)
- logging.info(f"Total number of docs_processed used by vectorstore: {len(docs_processed_unique)}")
- # Store the document into a vector store with a specific embedding model
- embedding_model = HuggingFaceEmbeddings(
- model_name=embedding_model_name,
- model_kwargs={"device": "cuda"},
- encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
- )
- vectorstore = FAISS.from_documents(docs_processed_unique, embedding_model, distance_strategy=DistanceStrategy.COSINE)
- retriever = vectorstore.as_retriever(
- search_kwargs={"k": retrieved_docs_num},
- )
- return retriever
- def generate_answers_with_RAG(model_name, question_list,api_config,retriever,api_url_overwrite=None):
- api_url = api_config['model_endpoint_url']
- if api_url_overwrite:
- api_url = api_url_overwrite
- key = api_config['api_key']
- # Load the RAFT model
- llm = ChatOpenAI(
- openai_api_key=key,
- openai_api_base=api_url,
- model_name=model_name,
- temperature=0.0,
- max_tokens=1000
- )
- all_tasks = []
- for q in question_list:
- # retrieve the top K documents
- retrieved_docs = retriever.invoke(q)
- # format the documents into a string
- documents = format_docs_raft(retrieved_docs)
- # create a prompt
- text = api_config["RAG_prompt_template"].format(context=documents,question=q)
- all_tasks.append(text)
- generated_answers = llm.batch(all_tasks)
- generated_answers = [ item.content for item in generated_answers]
- if len(generated_answers) == 0:
- logging.error("No RAG answers generated. Please check the input context or model configuration in ",model_name)
- return []
- return clean_text_list(generated_answers)
- def compute_rouge_score(generated : list, reference: list):
- rouge_score = evaluate.load('rouge')
- return rouge_score.compute(
- predictions=generated,
- references=reference,
- use_stemmer=True,
- use_aggregator=True
- )
- def clean_text_list(text_list):
- result = []
- for text in text_list:
- # for raft model, the answer will started with <ANSWER>
- index = text.rfind("<ANSWER>")
- if index!= -1:
- text = text[index:]
- text = text.replace("</ANSWER>:","")
- text = text.replace("begin_quote","")
- text = text.replace("end_quote","")
- text = text.replace("##","")
- text = text.strip()
- result.append(text)
- return result
- def normalize_answer(s):
- def remove_articles(text):
- return re.sub(r'\b(a|an|the)\b', ' ', text)
- def white_space_fix(text):
- return ' '.join(text.split())
- def remove_punc(text):
- exclude = set(string.punctuation)
- return ''.join(ch for ch in text if ch not in exclude)
- def lower(text):
- return text.lower()
- return white_space_fix(remove_articles(remove_punc(lower(s))))
- def exact_match_score(prediction, ground_truth):
- """Computes EM score for a single prediction and ground truth answer."""
- num_match = 0
- assert len(prediction) == len(ground_truth), "Answer length does not match prediction length."
- assert(len(ground_truth) > 0)
- for idx, (pred,gold) in enumerate(zip(prediction, ground_truth)):
- if (normalize_answer(pred) == normalize_answer(gold)):
- num_match += 1
- return num_match/len(ground_truth)
- def compute_judge_score(questions: list, generated : list, reference: list, api_config,api_url="http://localhost:8001/v1",key="EMPTY"):
- correct_num = 0
- model_name = "meta-llama/Meta-Llama-3-70B-Instruct"
- llm = ChatOpenAI(
- openai_api_key=key,
- openai_api_base=api_url,
- model_name=model_name,
- max_tokens=1000,
- temperature=0.0)
- all_tasks = []
- for question,prediction,gold in zip(questions, generated,reference):
- message = api_config['judge_prompt_template'].format(question=question,prediction=prediction,gold=gold)
- all_tasks.append(message)
- judge_responses = llm.batch(all_tasks)
- judge_responses = ["YES" in item.content for item in judge_responses]
- correct_num = sum(judge_responses)
- return correct_num/len(questions),judge_responses
- def score_single(api_config,generated,reference,questions, run_exact_match=True,run_rouge=True, run_llm_as_judge=True):
- # set metric to default -1, means no metric is computed
- metric = {
- "Rouge_score": -1,
- "LLM_judge_score": -1,
- "Exact_match": -1
- }
- if run_rouge:
- rouge_score = compute_rouge_score(generated,reference)
- metric["Rouge_score"] = rouge_score
- print("Rouge_score:",rouge_score)
- if api_config["judge_endpoint_url"] and run_llm_as_judge:
- api_url = api_config["judge_endpoint_url"]
- LLM_judge_score,judge_responses = compute_judge_score(questions, generated, reference, api_config,api_url=api_url)
- metric["LLM_judge_score"] = LLM_judge_score
- metric["LLM_judge_responses"] = judge_responses
- print(f"LLM_judge_score: {LLM_judge_score}")
- if run_exact_match:
- exact_match = exact_match_score(generated,reference)
- print(f"Exact_match_percentage: {exact_match:.4f}")
- metric["Exact_match"] = exact_match
- return metric
- def main(api_config):
- # Since the eval set is small, we can run the eval without async functions
- try:
- api_url = api_config["model_endpoint_url"]
- logging.info("Starting to generate answer given the eval set.")
- questions,groud_truth = [],[]
- if api_config["eval_file"].endswith(".parquet"):
- eval_file = pd.read_parquet(api_config["eval_file"],filters=[('source', '=', 'pt_discuss_forum')])
- for index, item in eval_file.iterrows():
- questions.append(item["question"]+"\nDetails:\n"+item["context"])
- groud_truth.append(item["answer"])
- else:
- with open(api_config["eval_file"]) as fp:
- eval_file = json.load(fp)
- for index, item in enumerate(eval_file):
- questions.append(item["question"])
- groud_truth.append(item["answer"])
- generated_answers = {}
- # build retriever
- retriever = build_retriever(api_config,"sentence-transformers/multi-qa-mpnet-base-cos-v1",api_config["rag_topk"])
- # Generate answers for 8B models
- model_name = api_config["model_name"]
- generated_answers[model_name] = generate_answers_model_only(model_name,questions,api_url)
- generated_answers[model_name+"_RAG"] = generate_answers_with_RAG(model_name, questions,api_config,retriever)
- print("Finished generating answers for ", model_name)
- large_model_name = "meta-llama/Meta-Llama-3-70B-Instruct"
- large_api_url = api_config["judge_endpoint_url"]
- generated_answers["70B_Base"] = generate_answers_model_only(large_model_name,questions,large_api_url)
- generated_answers["70B_RAG"] = generate_answers_with_RAG(large_model_name, questions,api_config,retriever,large_api_url)
- print("Finished generating answers for ", large_model_name)
- logging.info(f"Successfully generated {len(generated_answers[model_name+'_RAG'])} answers for all models.")
- # for generate answer from each model, compute the score metric
- all_metrics = []
- output_file = api_config["output_log"]+str(datetime.now().strftime("%Y%m%d_%H%M%S"))
- for model_name,model_answer in generated_answers.items():
- if len(model_answer) != len(groud_truth):
- print(f"The length of {model_name} answer is not equal to the length of ground truth.")
- continue
- metric = score_single(api_config,model_answer,groud_truth,questions)
- print(f"The eval result for {model_name} is: {metric}")
- with open(output_file,"a") as fp:
- fp.write(f"Eval_result for {model_name} \n")
- fp.write(f"Rouge_score: {metric['Rouge_score']} \n")
- fp.write(f"Exact_match_percentage: {metric['Exact_match']} \n")
- judge_responses = ["None"] * len(questions)
- if api_config["judge_endpoint_url"]:
- fp.write(f"LLM_judge_score: {metric['LLM_judge_score']} \n")
- judge_responses = metric["LLM_judge_responses"]
- all_metrics.append((model_name,metric['LLM_judge_score'],metric["LLM_judge_responses"]))
- fp.write(f"QA details: \n")
- for item in zip(questions,model_answer,groud_truth,judge_responses):
- fp.write(f"question: {item[0]} \n")
- fp.write(f"generated_answers: {item[1]} \n")
- fp.write(f"groud_truth: {item[2]} \n")
- fp.write(f"LLM_judge_response: {item[3]} \n")
- fp.write("\n")
- fp.write("\n------------------------------------\n")
- # Now we want to take a closer look at the questions that are not answered the same by all the models.
- judge_zip = list(zip(*[item[-1] for item in all_metrics]))
- model_names = [item[0] for item in all_metrics]
- with open(output_file,"a") as fp:
- for item in all_metrics:
- fp.write(f"Model_Name: {item[0]}, LLM_SCORE: {item[1]} \n")
- for idx,item in enumerate(judge_zip):
- # if all the responses are "YES", then we skip this question
- if sum(item) == len(item):
- continue
- else:
- fp.write(f"Comparing interested question: {questions[idx]} \n")
- fp.write(f"groud_truth: {groud_truth[idx]} \n")
- for i in range(len(model_names)):
- fp.write(f"{item[i]} {model_names[i]}_answers: {generated_answers[model_names[i]][idx]} \n")
- fp.write("------------------------\n")
- fp.write(json.dumps(all_metrics))
- print("Finished evaluating the model.")
- logging.info(f"Eval successfully, the eval result is saved to {api_config['output_log']}.")
- # Saving the eval result to a log file
- except Exception as e:
- logging.error(f"An unexpected error occurred during the process: {e}",exc_info=True)
- def parse_arguments():
- # Define command line arguments for the script
- parser = argparse.ArgumentParser(
- description="Generate question/answer pairs from documentation."
- )
- parser.add_argument(
- "-m", "--model_name",
- default=None,
- help="Provide the model_name to use for evaluation. If not specified, the model_path in eval_config.yaml will be used."
- )
- parser.add_argument(
- "-c", "--config_path",
- default="raft_eval_config.yaml",
- help="Set the configuration file path that has system prompt along with language, evalset path."
- )
- parser.add_argument(
- "-d", "--data_dir",
- default=None,
- help="Provide the data folder path to build RAG for evaluation. If not specified, the data_dir in eval_config.yaml will be used."
- )
- parser.add_argument(
- "-u", "--model_endpoint_url",
- default="http://localhost:8000/v1",
- type=str,
- help="The raft model endpoint url for eval."
- )
- parser.add_argument(
- "-j", "--judge_endpoint_url",
- default=None,
- type=str,
- help="The large model endpoint url for judge as LLM."
- )
- parser.add_argument(
- "-o", "--output_log",
- default="./eval_result",
- help="save the eval result to a log file. Default is eval_result[timestamp].log"
- )
- parser.add_argument(
- "-k", "--api_key",
- default="EMPTY",
- type=str,
- help="LLM API key for generating question/answer pairs."
- )
- parser.add_argument(
- "-r", "--rag_topk",
- default=5,
- type=int,
- help="set the number of top k documents the RAG needs to retrieve."
- )
- parser.add_argument("--chunk_size", type=int, default=1000, help="The character size of each chunk used in RAG")
- return parser.parse_args()
- if __name__ == "__main__":
- logging.info("Initializing the process and loading configuration...")
- args = parse_arguments()
- api_config = load_config(args.config_path)
- api_config["model_endpoint_url"] = args.model_endpoint_url
- if args.data_dir:
- api_config["data_dir"] = args.data_dir
- if args.model_name:
- api_config["model_name"] = args.model_name
- api_config["judge_endpoint_url"] = args.judge_endpoint_url
- api_config["output_log"] = args.output_log
- api_config["api_key"] = args.api_key
- api_config["chunk_size"] = args.chunk_size
- api_config["rag_topk"] = args.rag_topk
- if api_config["judge_endpoint_url"]:
- logging.info(f"The judge model url is: '{args.judge_endpoint_url}'.")
- main(api_config)
|