123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import os
- import logging
- from langchain.text_splitter import RecursiveCharacterTextSplitter
- from datasets import Dataset
- import random
- from langchain_community.document_loaders import SitemapLoader,DirectoryLoader
- from bs4 import BeautifulSoup
- from langchain_openai import ChatOpenAI
- import copy
- # Initialize logging
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
- def strip_str(s: str) -> str:
- """
- Helper function for helping format strings returned by GPT-4.
- """
- l, r = 0, len(s)-1
- beg_found = False
- for i in range(len(s)):
- if s[i].isalpha():
- if not beg_found:
- l = i
- beg_found = True
- else:
- r = i
- r += 2
- return s[l:min(r, len(s))]
- def clean_documents(raw_text):
- all_lines = []
- for line in raw_text.split("\n"):
- line = line.strip()
- if len(line.split()) == 0:
- continue
- else:
- all_lines.append(line)
- result = " ".join(all_lines)
- return result
- def clean_text(content: BeautifulSoup) -> str:
- # Find all 'nav' and 'header' elements in the BeautifulSoup object
- nav_elements = content.find_all("nav")
- header_elements = content.find_all("header")
- mydivs = content.find_all("div", {"role": "list"})
- # Remove each 'nav' and 'header' element from the BeautifulSoup object
- for element in nav_elements + header_elements+mydivs:
- element.decompose()
- raw_text = content.get_text("\n")
- return clean_documents(raw_text)
- # Read
- def read_file_content(xml_path: str, data_folder: str) -> str:
- if xml_path and data_folder:
- logging.info(f"Error: both xml_path and data_folder are provided, will only read from xml for now")
- if not xml_path and not data_folder:
- logging.info(f"Error: both xml_path and data_folder are not provided")
- return ""
- if xml_path:
- if not os.path.exists(xml_path):
- logging.info(f"Error: {xml_path} does not exist")
- return ""
- # Use langchain to load the documents from webpage links in the xml file
- sitemap_loader = SitemapLoader(web_path=xml_path,is_local=True,parsing_function=clean_text)
- sitemap_loader.requests_kwargs = {"verify": False}
- docs = sitemap_loader.load()
- return docs
- elif len(data_folder) != 0:
- if not os.path.exists(data_folder):
- logging.info(f"Error: {data_folder} does not exist")
- return ""
- # Use langchain to load the documents from data folder
- loader = DirectoryLoader(data_folder)
- docs = loader.load()
- return docs
- def get_chunks(
- docs: list,
- chunk_size: int = 1000,
- api_config: dict = None,
- ) -> list[str]:
- """
- Takes in a list of documents, breaks them down into chunks of size
- `chunk_size`, and returns the chunks.
- """
- chunks = []
- if len(docs) == 0:
- raise TypeError("Can not get chunks from empty text")
- else:
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=api_config["chunk_size"],chunk_overlap=int(api_config["chunk_size"] / 10),separators= ["----------","\n\n", "\n", " "],strip_whitespace=True)
- docs_processed = text_splitter.split_documents(docs)
- logging.info(f"Total number of docs_processed: {len(docs_processed)}")
- # Remove duplicates
- unique_texts = {}
- docs_processed_unique = []
- for doc in docs_processed:
- if doc.page_content not in unique_texts and len(doc.page_content) > 100 :
- unique_texts[doc.page_content] = True
- docs_processed_unique.append(doc)
- chunks = [chunk.page_content for chunk in docs_processed_unique]
- logging.info(f"Total number of docs_processed_unique: {len(docs_processed_unique)}")
- return chunks
- # read all the files in the data folder, then split them into chunks
- # generate questions for each chunk and return zip of chunk and related questions list
- def generate_questions(api_config):
- # get documents from the data folder or xml file
- api_url = api_config["endpoint_url"]
- key = api_config["api_key"]
- documents = read_file_content(api_config["xml_path"],api_config["data_dir"])
- if len(documents) == 0:
- logging.info(f"Error reading files, document_text is {len(documents)}")
- document_batches = get_chunks(documents,api_config["chunk_size"],api_config)
- # use OpenAI API protocol to handle the chat request, including local VLLM openai compatible server
- llm = ChatOpenAI(
- openai_api_key=key,
- openai_api_base=api_url,
- model_name=api_config["model"],
- temperature=0.0,
- max_tokens=500
- )
- all_tasks = [api_config['question_prompt_template'].format(num_questions=str(api_config['questions_per_chunk']),context=document) for document in document_batches]
- generated_answers = llm.batch(all_tasks)
- generated_answers = [ item.content for item in generated_answers]
- if len(generated_answers) == 0:
- logging.error("No model answers generated. Please check the input context or model configuration in ",api_config["model"])
- return []
- final_result = []
- for result in generated_answers:
- queries = result.split('\n')
- queries = [strip_str(q) for q in queries]
- queries = [q for q in queries if any(c.isalpha() for c in q)]
- if len(queries) > int(api_config['questions_per_chunk']):
- # As the model may have unrelated question at the beginning of the result
- # if queries is more than questions_per_chunk, then we need to truncate it and only keep last questions_per_chunk lines
- queries = queries[-int(api_config['questions_per_chunk']):]
- final_result.append(queries)
- return list(zip(document_batches,final_result))
- # Generate COT answer for each question given the chunk context
- def generate_COT(chunk_questions_zip,api_config) -> dict:
- all_tasks = []
- chunk_questions = []
- question_asked = set()
- for document_content,questions in chunk_questions_zip:
- for question in questions:
- question = question.strip()
- # avoid asking the same question twice
- if question not in question_asked:
- question_asked.add(question)
- prompt = api_config['COT_prompt_template'].format(question=question,context=str(document_content))
- all_tasks.append(prompt)
- chunk_questions.append((document_content,question))
- # use OpenAI API protocol to handle the chat request, including local VLLM openai compatible server
- llm = ChatOpenAI(
- openai_api_key=api_config["api_key"],
- openai_api_base=api_config["endpoint_url"],
- model_name=api_config["model"],
- temperature=0.0,
- max_tokens=500
- )
- generated_answers = llm.batch(all_tasks)
- generated_answers = [ item.content for item in generated_answers]
- COT_results = []
- # return a list of (chunk, question, generated_answer)
- for (chunk, question),generated_answer in zip(chunk_questions,generated_answers):
- COT_results.append((chunk,question,generated_answer))
- return COT_results
- def add_chunk_to_dataset(
- chunk_questions_zip: list,
- api_config: dict,
- ) -> None:
- """
- Given a chunk and related questions lists, create {Q, A, D} triplets and add them to the dataset.
- """
- num_distract = api_config["num_distract_docs"]
- p = api_config["refusal_probability"]
- chunks = [chunk for chunk, _ in chunk_questions_zip]
- COT_results = generate_COT(chunk_questions_zip,api_config)
- logging.info(f"COT generation completed, total num of COT results: {len(COT_results)}")
- completed,refusal= 0,0
- data_list = []
- for chunk, q , cot in COT_results:
- # The COT answer will be used as the label in the fine-tuning stage
- datapt = {
- "id": None,
- "type": "general",
- "question": q,
- "context": None,
- "oracle_context": None,
- "cot_answer": cot
- }
- i = chunks.index(chunk)
- datapt["id"] = f"seed_task_{len(data_list)}"
- # add num_distract distractor docs
- docs = [chunk]
- indices = list(range(0, len(chunks)))
- indices.remove(i)
- for j in random.sample(indices, num_distract):
- docs.append(chunks[j])
- doc_copy = docs.copy()
- random.shuffle(docs)
- d = {
- "title": [],
- "sentences": []
- }
- d["title"].append(["placeholder_title"]*(num_distract+1))
- d["sentences"].append(docs)
- datapt["context"] = d
- datapt["oracle_context"] = chunk
- # construct model instruction
- context = ""
- for doc in docs:
- context += "<DOCUMENT>" + str(doc) + "</DOCUMENT>\n"
- context += q
- # This instruction will be used in the fine-tuning stage
- datapt["instruction"] = context
- datapt_copy = copy.deepcopy(datapt)
- # add to dataset
- data_list.append(datapt)
- # decides whether to add refusal example where the related documents are not provided
- refusal = random.uniform(0, 1) <= p
- if refusal:
- doc_copy[0] = chunks[random.sample(indices, 1)[0]]
- random.shuffle(doc_copy)
- refusl_context = ""
- for doc in doc_copy:
- refusl_context += "<DOCUMENT>" + str(doc) + "</DOCUMENT>\n"
- refusl_context += q
- # This instruction will be used in the fine-tuning stage
- datapt_copy["id"] = f"refusal_task_{len(data_list)}"
- datapt_copy["instruction"] = refusl_context
- datapt_copy["cot_answer"] = "Sorry, I don't know the answer to this question because related documents are not found. Please try again."
- data_list.append(datapt_copy)
- refusal += 1
- completed += 1
- if completed % 100 == 0:
- logging.info(f"refusal example added: {refusal}, total examples added: {completed}, total examples to be added: {len(COT_results)- completed}")
- ds = Dataset.from_list(data_list)
- return ds
|