|
2 mēneši atpakaļ | |
---|---|---|
.. | ||
blog_metadata | 2 mēneši atpakaļ | |
.env | 2 mēneši atpakaļ | |
Building_a_Messenger_Chatbot_with_Llama_3_blog.md | 2 mēneši atpakaļ | |
Technical_Blog_Generator.ipynb | 2 mēneši atpakaļ | |
readme.md | 2 mēneši atpakaļ | |
requirements.txt | 2 mēneši atpakaļ | |
setup_qdrant_collection.py | 2 mēneši atpakaļ |
This project provides a practical recipe for building an AI-powered technical blog generator leveraging LLama 4. It demonstrates how to combine the power of a Llama4 with a local, in-memory vector database (Qdrant) to synthesize accurate, relevant, and well-structured technical blog posts from your existing documentation.
Integrating a Llama LLM with a vector database via a RAG approach offers significant advantages over using an LLM alone:
The system follows a standard RAG pipeline, adapted for local development:
all-MiniLM-L6-v2
) converts these text chunks into numerical vector embeddings. These vectors are then stored in an in-memory Qdrant vector database.pip
for installing Python packagesFollow these steps to set up and run the technical blog generator.
First, clone the llama-cookbook
repository and navigate to the specific recipe directory:
```bash git clone https://github.com/your-github-username/llama-cookbook.git # Replace with actual repo URL if different cd llama-cookbook/end-to-end-use-cases/technical_blogger
Step 2: Set Up Your Python Environment
Step 3: Configure Your API Key
Step 4: Prepare Your Knowledge Base (Data Ingestion)
Step 5: Run the Notebook