| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import osimport sysimport timeimport fireimport gradio as grimport torchfrom accelerate.utils import is_xpu_availablefrom llama_recipes.inference.model_utils import load_model, load_peft_modelfrom llama_recipes.inference.safety_utils import AgentType, get_safety_checkerfrom transformers import AutoTokenizerdef main(    model_name,    peft_model: str = None,    quantization: str = None, # Options: 4bit, 8bit    max_new_tokens=100,  # The maximum numbers of tokens to generate    prompt_file: str = None,    seed: int = 42,  # seed value for reproducibility    do_sample: bool = True,  # Whether or not to use sampling ; use greedy decoding otherwise.    min_length: int = None,  # The minimum length of the sequence to be generated, input prompt + min_new_tokens    use_cache: bool = True,  # [optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.    top_p: float = 1.0,  # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.    temperature: float = 1.0,  # [optional] The value used to modulate the next token probabilities.    top_k: int = 50,  # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.    repetition_penalty: float = 1.0,  # The parameter for repetition penalty. 1.0 means no penalty.    length_penalty: int = 1,  # [optional] Exponential penalty to the length that is used with beam-based generation.    enable_azure_content_safety: bool = False,  # Enable safety check with Azure content safety api    enable_sensitive_topics: bool = False,  # Enable check for sensitive topics using AuditNLG APIs    enable_salesforce_content_safety: bool = True,  # Enable safety check with Salesforce safety flan t5    enable_llamaguard_content_safety: bool = False,    max_padding_length: int = None,  # the max padding length to be used with tokenizer padding the prompts.    use_fast_kernels: bool = False,  # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels    share_gradio: bool = False,  # Enable endpoint creation for gradio.live    **kwargs,):    # Set the seeds for reproducibility    if is_xpu_available():        torch.xpu.manual_seed(seed)    else:        torch.cuda.manual_seed(seed)    torch.manual_seed(seed)    model = load_model(model_name, quantization, use_fast_kernels, **kwargs)    if peft_model:        model = load_peft_model(model, peft_model)    model.eval()    tokenizer = AutoTokenizer.from_pretrained(model_name)    tokenizer.pad_token = tokenizer.eos_token    def inference(        user_prompt,        temperature,        top_p,        top_k,        max_new_tokens,        **kwargs,    ):        safety_checker = get_safety_checker(            enable_azure_content_safety,            enable_sensitive_topics,            enable_salesforce_content_safety,            enable_llamaguard_content_safety,        )        # Safety check of the user prompt        safety_results = [check(user_prompt) for check in safety_checker]        are_safe = all([r[1] for r in safety_results])        if are_safe:            print("User prompt deemed safe.")            print(f"User prompt:\n{user_prompt}")        else:            print("User prompt deemed unsafe.")            for method, is_safe, report in safety_results:                if not is_safe:                    print(method)                    print(report)            print("Skipping the inference as the prompt is not safe.")            return  # Exit the program with an error status        batch = tokenizer(            user_prompt,            truncation=True,            max_length=max_padding_length,            return_tensors="pt",        )        if is_xpu_available():            batch = {k: v.to("xpu") for k, v in batch.items()}        else:            batch = {k: v.to("cuda") for k, v in batch.items()}        start = time.perf_counter()        with torch.no_grad():            outputs = model.generate(                **batch,                max_new_tokens=max_new_tokens,                do_sample=do_sample,                top_p=top_p,                temperature=temperature,                min_length=min_length,                use_cache=use_cache,                top_k=top_k,                repetition_penalty=repetition_penalty,                length_penalty=length_penalty,                **kwargs,            )        e2e_inference_time = (time.perf_counter() - start) * 1000        print(f"the inference time is {e2e_inference_time} ms")        output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)        # Safety check of the model output        safety_results = [            check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt)            for check in safety_checker        ]        are_safe = all([r[1] for r in safety_results])        if are_safe:            print("User input and model output deemed safe.")            print(f"Model output:\n{output_text}")            return output_text        else:            print("Model output deemed unsafe.")            for method, is_safe, report in safety_results:                if not is_safe:                    print(method)                    print(report)            return None    if prompt_file is not None:        assert os.path.exists(            prompt_file        ), f"Provided Prompt file does not exist {prompt_file}"        with open(prompt_file, "r") as f:            user_prompt = "\n".join(f.readlines())        inference(user_prompt, temperature, top_p, top_k, max_new_tokens)    elif not sys.stdin.isatty():        user_prompt = "\n".join(sys.stdin.readlines())        inference(user_prompt, temperature, top_p, top_k, max_new_tokens)    else:        gr.Interface(            fn=inference,            inputs=[                gr.components.Textbox(                    lines=9,                    label="User Prompt",                    placeholder="none",                ),                gr.components.Slider(                    minimum=0, maximum=1, value=1.0, label="Temperature"                ),                gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Top p"),                gr.components.Slider(                    minimum=0, maximum=100, step=1, value=50, label="Top k"                ),                gr.components.Slider(                    minimum=1, maximum=2000, step=1, value=200, label="Max tokens"                ),            ],            outputs=[                gr.components.Textbox(                    lines=5,                    label="Output",                )            ],            title="Meta Llama3 Playground",            description="https://github.com/meta-llama/llama-recipes",        ).queue().launch(server_name="0.0.0.0", share=share_gradio)if __name__ == "__main__":    fire.Fire(main)
 |