123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 3 Community License Agreement.
- from chat_utils import OctoAIChatService, VllmChatService
- import logging
- import evaluate
- import argparse
- from config import load_config
- import asyncio
- import json
- from itertools import chain
- from generator_utils import parse_qa_to_json, generate_LLM_eval
- from langchain_community.llms import VLLM
- from langchain_community.embeddings import HuggingFaceEmbeddings
- from langchain_community.vectorstores import FAISS
- from langchain.text_splitter import RecursiveCharacterTextSplitter
- from langchain_community.document_loaders import DirectoryLoader
- from langchain.chains import RetrievalQA
- from eval_utils import exact_match_score
- def generate_answers_model_only(model_path):
- # Use langchain to load the documents from data directory
- # Load the RAFT model
- llm = VLLM(model=model_path,
- trust_remote_code=True, # mandatory for hf models
- max_new_tokens=500,
- top_p=1,
- temperature=0.0,
- # tensor_parallel_size=... # for distributed inference
- )
- generated_answers = []
- for question in question_list:
- result = llm.invoke(question)
- generated_answers.append(result["answer"])
- return generated_answers
- def generate_answers_with_RAG(model_path, data_dir,question_list):
- # Use langchain to load the documents from data directory
- loader = DirectoryLoader(data_dir)
- docs = loader.load()
- # Split the document into chunks with a specified chunk size
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
- all_splits = text_splitter.split_documents(docs)
- # Store the document into a vector store with a specific embedding model
- vectorstore = FAISS.from_documents(all_splits, HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2"))
- # Load the RAFT model
- llm = VLLM(model=model_path,
- trust_remote_code=True, # mandatory for hf models
- max_new_tokens=500,
- top_p=1,
- temperature=0.0,
- # tensor_parallel_size=... # for distributed inference
- )
- # Create a RetrievalQA chain with the vector store and RAFT model
- qa_chain = RetrievalQA.from_chain_type(
- llm,
- retriever=vectorstore.as_retriever()
- )
- generated_answers = []
- for question in question_list:
- result = qa_chain({"query": question})
- generated_answers.append(result["answer"])
- return generated_answers
- def compute_rouge_score(generated : str, reference: str):
- rouge_score = evaluate.load('rouge')
- return rouge_score.compute(
- predictions=generated,
- references=reference,
- use_stemmer=True,
- use_aggregator=True
- )
- def compute_bert_score(generated : str, reference: str):
- bertscore = evaluate.load("bertscore")
- score = bertscore.compute(
- predictions=generated,
- references=reference,
- lang="en"
- )
- f1 = score["f1"]
- precision = score["precision"]
- recall = score["recall"]
- return sum(precision)/len(precision), sum(recall)/len(recall), sum(f1)/len(f1)
- # This function is used to eval the fine-tuned model, given the question, generate the answer.
- async def eval_request(chat_service, api_context: dict, question: str) -> dict:
- prompt_for_system = api_context['eval_prompt_template'].format(language=api_context["language"])
- chat_request_payload = [{'role': 'system', 'content': prompt_for_system}, {'role': 'user', 'content': f"Question: {question}"}]
- # Getting a list of result, in this case, there should be only one result
- response_string = await chat_service.execute_chat_request_async(api_context, chat_request_payload)
- # convert the result string to a dict that contains Question, Answer
- result_list = parse_qa_to_json(response_string)
- if not result_list or len(result_list) > 1:
- print("Error: eval response should be a list of one result dict")
- return {}
- result = result_list[0]
- if "Answer" not in result:
- print("Error: eval response does not contain answer")
- return {}
- # Send back the model generated answer
- return result["Answer"]
- async def generate_eval_answer(chat_service, api_context: dict, questions: list):
- eval_tasks = []
- for batch_index, question in enumerate(questions):
- try:
- result = eval_request(chat_service, api_context, question)
- eval_tasks.append(result)
- except Exception as e:
- print(f"Error during data eval request execution: {e}")
- print(len(eval_tasks),"eval_tasks")
- eval_results = await asyncio.gather(*eval_tasks)
- return eval_results
- async def main(context):
- if context["endpoint"]:
- chat_service = VllmChatService()
- else:
- chat_service = OctoAIChatService()
- try:
- logging.info("Starting to generate answer given the eval set.")
- with open(context["eval_json"]) as fp:
- eval_json = json.load(fp)
- questions,groud_truth = [],[]
- for index, item in enumerate(eval_json):
- questions.append(item["question"])
- groud_truth.append(item["answer"])
- generated_answers = generate_answers_with_RAG(model_path, context,questions)
- if not generated_answers:
- logging.warning("No answers generated. Please check the input context or model configuration.")
- return
- logging.info(f"Successfully generated {len(generated_answers)} answers.")
- judge_list = []
- for index, item in enumerate(generated_answers):
- judge_list.append({"Question":questions[index],"Ground_truth":groud_truth[index],"Generated_answer":generated_answers[index]})
- if context["judge_endpoint"]:
- # make a copy of the context then change the VLLM endpoint to judge_endpoint
- context_copy = dict(context)
- context_copy["endpoint"] = context["judge_endpoint"]
- context_copy["model"] = "meta-llama/Meta-Llama-3-70B-Instruct"
- judge_results = await generate_LLM_eval(chat_service, context_copy, judge_list)
- correct_num = 0
- for result in judge_results:
- correct_num += result["Result"] == "YES"
- LLM_judge_score = correct_num/len(judge_results)
- print(f"The accuracy of the model is {LLM_judge_score}")
- rouge_score = compute_rouge_score(generated_answers,groud_truth)
- print("Rouge_score:",rouge_score)
- P, R, F1 = compute_bert_score(generated_answers,groud_truth)
- print(f"BERTScore Precision: {P:.4f}, Recall: {R:.4f}, F1: {F1:.4f}")
- exact_match = 0
- for item in judge_list:
- exact_match += exact_match_score(item['Generated_answer'],item['Ground_truth'])
- exact_match_percentage = exact_match/len(judge_list)
- print(f"Exact_match_percentage: {exact_match_percentage:.4f}")
- # Saving the eval result to a log file
- with open(context["output_log"],"a") as fp:
- fp.write(f"Eval_result for {context['model']} \n")
- fp.write(f"Rouge_score: {rouge_score} \n")
- fp.write(f"BERTScore Precision: {P:.4f}, Recall: {R:.4f}, F1: {F1:.4f} \n")
- fp.write(f"Exact_match_percentage: {exact_match_percentage} \n")
- if context["judge_endpoint"]:
- fp.write(f"LLM_judge_score: {LLM_judge_score} \n")
- fp.write(f"QA details: \n")
- for item in judge_list:
- fp.write(f"question: {item['Question']} \n")
- fp.write(f"generated_answers: {item['Generated_answer']} \n")
- fp.write(f"groud_truth: {item['Ground_truth']} \n")
- fp.write("\n")
- logging.info(f"Eval successfully, the eval result is saved to {context['output_log']}.")
- except Exception as e:
- logging.error(f"An unexpected error occurred during the process: {e}",exc_info=True)
- def parse_arguments():
- # Define command line arguments for the script
- parser = argparse.ArgumentParser(
- description="Generate question/answer pairs from documentation."
- )
- parser.add_argument(
- "-m", "--model",
- default="chatbot",
- help="Select the model to use for evaluation, this maybe a LoRA adapter."
- )
- parser.add_argument(
- "-c", "--config_path",
- default="eval_config.yaml",
- help="Set the configuration file path that has system prompt along with language, evalset path."
- )
- parser.add_argument(
- "-v", "--vllm_endpoint",
- default=None,
- type=int,
- help="If a port is specified, then use local vllm endpoint for evaluations."
- )
- parser.add_argument(
- "-j", "--judge_endpoint",
- default=None,
- type=int,
- help="If a port is specified, then use local vllm endpoint as judge LLM."
- )
- parser.add_argument(
- "-o", "--output_log",
- default="eval_result.log",
- help="save the eval result to a log file. Default is eval_result.log"
- )
- return parser.parse_args()
- if __name__ == "__main__":
- logging.info("Initializing the process and loading configuration...")
- args = parse_arguments()
- context = load_config(args.config_path)
- context["model"] = args.model
- context["endpoint"] = args.vllm_endpoint
- context["judge_endpoint"] = args.judge_endpoint
- context["output_log"] = args.output_log
- if context["endpoint"]:
- logging.info(f"Use local vllm service for eval at port: '{args.vllm_endpoint}'.")
- if context["judge_endpoint"]:
- logging.info(f"Use local vllm service for judge at port: '{args.judge_endpoint}'.")
- asyncio.run(main(context))
|