| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- import fire
 
- import os
 
- import sys
 
- import time
 
- import torch
 
- from transformers import AutoTokenizer
 
- from llama_recipes.inference.safety_utils import get_safety_checker
 
- from llama_recipes.inference.model_utils import load_model, load_peft_model
 
- def handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt):
 
-     """
 
-     Handles the output based on the safety check of both user and system prompts.
 
-     Parameters:
 
-     - are_safe_user_prompt (bool): Indicates whether the user prompt is safe.
 
-     - user_prompt (str): The user prompt that was checked for safety.
 
-     - safety_results_user_prompt (list of tuples): A list of tuples for the user prompt containing the method, safety status, and safety report.
 
-     - are_safe_system_prompt (bool): Indicates whether the system prompt is safe.
 
-     - system_prompt (str): The system prompt that was checked for safety.
 
-     - safety_results_system_prompt (list of tuples): A list of tuples for the system prompt containing the method, safety status, and safety report.
 
-     """
 
-     def print_safety_results(are_safe_prompt, prompt, safety_results, prompt_type="User"):
 
-         """
 
-         Prints the safety results for a prompt.
 
-         Parameters:
 
-         - are_safe_prompt (bool): Indicates whether the prompt is safe.
 
-         - prompt (str): The prompt that was checked for safety.
 
-         - safety_results (list of tuples): A list of tuples containing the method, safety status, and safety report.
 
-         - prompt_type (str): The type of prompt (User/System).
 
-         """
 
-         if are_safe_prompt:
 
-             print(f"{prompt_type} prompt deemed safe.")
 
-             print(f"{prompt_type} prompt:\n{prompt}")
 
-         else:
 
-             print(f"{prompt_type} prompt deemed unsafe.")
 
-             for method, is_safe, report in safety_results:
 
-                 if not is_safe:
 
-                     print(method)
 
-                     print(report)
 
-             print(f"Skipping the inference as the {prompt_type.lower()} prompt is not safe.")
 
-             sys.exit(1)
 
-     # Check user prompt
 
-     print_safety_results(are_safe_user_prompt, user_prompt, safety_results_user_prompt, "User")
 
-     
 
-     # Check system prompt
 
-     print_safety_results(are_safe_system_prompt, system_prompt, safety_results_system_prompt, "System")
 
- def main(
 
-     model_name,
 
-     peft_model: str=None,
 
-     quantization: bool=False,
 
-     max_new_tokens =100, #The maximum numbers of tokens to generate
 
-     seed: int=42, #seed value for reproducibility
 
-     do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
 
-     min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
 
-     use_cache: bool=False,  #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
 
-     top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
 
-     temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
 
-     top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
 
-     repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
 
-     length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation. 
 
-     enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
 
-     enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
 
-     enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
 
-     enable_llamaguard_content_safety: bool=False, # Enable safety check with Llama-Guard
 
-     use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
 
-     **kwargs
 
- ):
 
-     system_prompt = input("Please insert your system prompt: ")
 
-     user_prompt = input("Please insert your prompt: ")
 
-     chat = [
 
-    {"role": "system", "content": system_prompt},
 
-    {"role": "user", "content": user_prompt},
 
-     ]       
 
-     # Set the seeds for reproducibility
 
-     torch.cuda.manual_seed(seed)
 
-     torch.manual_seed(seed)
 
-     
 
-     model = load_model(model_name, quantization, use_fast_kernels)
 
-     if peft_model:
 
-         model = load_peft_model(model, peft_model)
 
-     model.eval()
 
-         
 
-     tokenizer = AutoTokenizer.from_pretrained(model_name)
 
-     safety_checker = get_safety_checker(enable_azure_content_safety,
 
-                                         enable_sensitive_topics,
 
-                                         enable_salesforce_content_safety,
 
-                                         enable_llamaguard_content_safety,
 
-                                         )
 
-     # Safety check of the user prompt
 
-     safety_results_user_prompt = [check(user_prompt) for check in safety_checker]
 
-     safety_results_system_prompt = [check(system_prompt) for check in safety_checker]
 
-     are_safe_user_prompt = all([r[1] for r in safety_results_user_prompt])
 
-     are_safe_system_prompt = all([r[1] for r in safety_results_system_prompt])
 
-     handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt)
 
-         
 
-     inputs = tokenizer.apply_chat_template(chat, return_tensors="pt").to("cuda")
 
-     start = time.perf_counter()
 
-     with torch.no_grad():
 
-         outputs = model.generate(
 
-             input_ids=inputs,
 
-             max_new_tokens=max_new_tokens,
 
-             do_sample=do_sample,
 
-             top_p=top_p,
 
-             temperature=temperature,
 
-             min_length=min_length,
 
-             use_cache=use_cache,
 
-             top_k=top_k,
 
-             repetition_penalty=repetition_penalty,
 
-             length_penalty=length_penalty,
 
-             **kwargs 
 
-         )
 
-     e2e_inference_time = (time.perf_counter()-start)*1000
 
-     print(f"the inference time is {e2e_inference_time} ms")
 
-     output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
-     
 
-     # Safety check of the model output
 
-     safety_results = [check(output_text) for check in safety_checker]
 
-     are_safe = all([r[1] for r in safety_results])
 
-     if are_safe:
 
-         print("User input and model output deemed safe.")
 
-         print(f"Model output:\n{output_text}")
 
-     else:
 
-         print("Model output deemed unsafe.")
 
-         for method, is_safe, report in safety_results:
 
-             if not is_safe:
 
-                 print(method)
 
-                 print(report)
 
-                 
 
- if __name__ == "__main__":
 
-     fire.Fire(main)
 
 
  |