| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import argparseimport jsonimport loggingimport osimport reimport sysfrom pathlib import Pathimport numpy as npimport lm_evalfrom lm_eval import tasksfrom lm_eval.utils import make_tabledef _handle_non_serializable(o):    if isinstance(o, np.int64) or isinstance(o, np.int32):        return int(o)    elif isinstance(o, set):        return list(o)    else:        return str(o)def setup_logging(verbosity):    logging.basicConfig(        level=verbosity.upper(), format="%(asctime)s - %(levelname)s - %(message)s"    )    return logging.getLogger(__name__)def handle_output(args, results, logger):    if not args.output_path:        if args.log_samples:            logger.error("Specify --output_path for logging samples.")            sys.exit(1)        logger.info(json.dumps(results, indent=2, default=_handle_non_serializable))        return    path = Path(args.output_path)    if path.is_file() or path.with_name("results.json").is_file():        logger.warning(f"File already exists at {path}. Results will be overwritten.")    output_dir = path.parent if path.suffix in (".json", ".jsonl") else path    output_dir.mkdir(parents=True, exist_ok=True)    results_str = json.dumps(results, indent=2, default=_handle_non_serializable)    if args.show_config:        logger.info(results_str)    file_path = os.path.join(args.output_path, "results.json")    with open(file_path , "w", encoding="utf-8") as f:        f.write(results_str)    if args.log_samples:        samples = results.pop("samples", {})        for task_name, _ in results.get("configs", {}).items():            output_name = re.sub(r"/|=", "__", args.model_args) + "_" + task_name            sample_file = output_dir.joinpath(f"{output_name}.jsonl")            sample_data = json.dumps(                samples.get(task_name, {}), indent=2, default=_handle_non_serializable            )            sample_file.write_text(sample_data, encoding="utf-8")    batch_sizes = ",".join(map(str, results.get("config", {}).get("batch_sizes", [])))    summary = f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"    logger.info(summary)    logger.info(make_table(results))    if "groups" in results:        logger.info(make_table(results, "groups"))def load_tasks(args):    if args.open_llm_leaderboard_tasks:        current_dir = os.getcwd()        config_dir = os.path.join(current_dir, "open_llm_leaderboard")        task_manager = tasks.TaskManager(include_path=config_dir)        return task_manager, [            "arc_challenge_25_shot",            "hellaswag_10_shot",            "truthfulqa_mc2",            "winogrande_5_shot",            "gsm8k",            "mmlu",        ]    return None, args.tasks.split(",") if args.tasks else []def parse_eval_args():    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)    parser.add_argument(        "--model", "-m", default="hf", help="Name of model, e.g., `hf`."    )    parser.add_argument(        "--tasks",        "-t",        default=None,        help="Comma-separated list of tasks, or 'list' to display available tasks.",    )    parser.add_argument(        "--model_args",        "-a",        default="",        help="Comma-separated string arguments for model, e.g., `pretrained=EleutherAI/pythia-160m`.",    )    parser.add_argument(        "--open_llm_leaderboard_tasks",        "-oplm",        action="store_true",        default=False,        help="Choose the list of tasks with specification in HF open LLM-leaderboard.",    )    parser.add_argument(        "--num_fewshot",        "-f",        type=int,        default=None,        help="Number of examples in few-shot context.",    )    parser.add_argument(        "--batch_size",        "-b",        default=1,        help="Batch size, can be 'auto', 'auto:N', or an integer.",    )    parser.add_argument(        "--max_batch_size",        type=int,        default=None,        help="Maximal batch size with 'auto' batch size.",    )    parser.add_argument(        "--device", default=None, help="Device for evaluation, e.g., 'cuda', 'cpu'."    )    parser.add_argument(        "--output_path", "-o", type=str, default=None, help="Path for saving results."    )    parser.add_argument(        "--limit",        "-L",        type=float,        default=None,        help="Limit number of examples per task.",    )    parser.add_argument(        "--use_cache", "-c", default=None, help="Path to cache db file, if used."    )    parser.add_argument(        "--verbosity",        "-v",        default="INFO",        help="Logging level: CRITICAL, ERROR, WARNING, INFO, DEBUG.",    )    parser.add_argument(        "--gen_kwargs",        default=None,        help="Generation kwargs for tasks that support it.",    )    parser.add_argument(        "--check_integrity",        action="store_true",        help="Whether to run the relevant part of the test suite for the tasks.",    )    parser.add_argument(        "--write_out",        "-w",        action="store_true",        default=False,        help="Prints the prompt for the first few documents.",    )    parser.add_argument(        "--log_samples",        "-s",        action="store_true",        default=False,        help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis.",    )    parser.add_argument(        "--show_config",        action="store_true",        default=False,        help="If True, shows the full config of all tasks at the end of the evaluation.",    )    parser.add_argument(        "--include_path",        type=str,        default=None,        help="Additional path to include if there are external tasks.",    )    return parser.parse_args()def evaluate_model(args):    try:        task_manager, task_list = load_tasks(args)        # Customized model such as Quantized model etc.        # In case you are working with a custom model, you can use the following guide to add it here:        # https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage        # Evaluate        results = lm_eval.simple_evaluate(            model=args.model,            model_args=args.model_args,            tasks=task_list,            num_fewshot=args.num_fewshot,            batch_size=args.batch_size,            max_batch_size=args.max_batch_size,            device=args.device,            use_cache=args.use_cache,            limit=args.limit,            check_integrity=args.check_integrity,            write_out=args.write_out,            log_samples=args.log_samples,            gen_kwargs=args.gen_kwargs,            task_manager=task_manager,        )        handle_output(args, results, logger)    except Exception as e:        logger.error(f"An error occurred during evaluation: {e}")        sys.exit(1)if __name__ == "__main__":    args = parse_eval_args()    logger = setup_logging(args.verbosity)    evaluate_model(args)
 |