| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.import randomimport pytestimport torchfrom llama_recipes.data.sampler import LengthBasedBatchSamplerfrom llama_recipes.data.sampler import DistributedLengthBasedBatchSamplerSAMPLES = 33@pytest.fixturedef dataset():    random.seed(42)    dataset = []    def add_samples(ds, n, a, b):        for _ in range(n):            ds.append(random.randint(a,b) * [1,])    add_samples(dataset, SAMPLES // 2, 1,9)    add_samples(dataset, (SAMPLES // 2) + (SAMPLES % 2), 10,20)        return random.sample(dataset, len(dataset))        @pytest.mark.parametrize("batch_size, drop_last", [(2, False), (8, False), (2, True), (8, True)])def test_batch_sampler_array(dataset, batch_size, drop_last):        sampler = LengthBasedBatchSampler(dataset, batch_size, drop_last)        EXPECTED_LENGTH = SAMPLES // batch_size if drop_last else (SAMPLES // batch_size) + (SAMPLES % batch_size)        all_ids = [i for b in sampler for i in b]    assert len(set(all_ids)) == EXPECTED_LENGTH * batch_size if drop_last else len(dataset)        assert len(sampler) == EXPECTED_LENGTH    is_long = [len(d)>=10 for d in dataset]        def check_batch(batch):        return all(batch) or not any(batch)        assert all(check_batch(is_long[i] for i in b) for b in sampler)        @pytest.mark.parametrize("batch_size, drop_last", [(2, False), (8, False), (2, True), (8, True)])def test_batch_sampler_dict(dataset, batch_size, drop_last):        dist_dataset = [{"input_ids": d, "attention_mask": d} for d in dataset]        sampler = LengthBasedBatchSampler(dist_dataset, batch_size, drop_last)        EXPECTED_LENGTH = SAMPLES // batch_size if drop_last else (SAMPLES // batch_size) + (SAMPLES % batch_size)        assert len(sampler) == EXPECTED_LENGTH    is_long = [len(d)>=10 for d in dataset]        def check_batch(batch):        return all(batch) or not any(batch)        assert all(check_batch(is_long[i] for i in b) for b in sampler)        @pytest.mark.parametrize("batch_size", [2, 8])def test_dist_batch_sampling(dataset, batch_size):    sampler_1 = DistributedLengthBasedBatchSampler(        dataset,        batch_size=batch_size,        rank=0,        num_replicas=2,        shuffle=False,    )    sampler_2 = DistributedLengthBasedBatchSampler(        dataset,        batch_size=batch_size,        rank=1,        num_replicas=2,        shuffle=False,    )        ids_1 = set(i for b in sampler_1 for i in b)    ids_2 = set(i for b in sampler_2 for i in b)        assert ids_1.isdisjoint(ids_2)    assert len(ids_1)+len(ids_2) > 0    assert len(ids_1)+len(ids_2) == len(dataset) // batch_size  *  batch_size 
 |