inference.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. from typing import List
  9. from transformers import LlamaTokenizer
  10. from safety_utils import get_safety_checker
  11. from model_utils import load_model, load_peft_model, load_llama_from_config
  12. from accelerate import init_empty_weights
  13. # Get the current file's directory
  14. current_directory = os.path.dirname(os.path.abspath(__file__))
  15. # Get the parent directory
  16. parent_directory = os.path.dirname(current_directory)
  17. # Append the parent directory to sys.path
  18. sys.path.append(parent_directory)
  19. from model_checkpointing import load_sharded_model_single_gpu
  20. def main(
  21. model_name,
  22. peft_model: str=None,
  23. quantization: bool=False,
  24. max_new_tokens =100, #The maximum numbers of tokens to generate
  25. prompt_file: str=None,
  26. seed: int=42, #seed value for reproducibility
  27. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  28. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  29. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  30. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  31. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  32. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  33. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  34. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  35. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  36. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  37. enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
  38. **kwargs
  39. ):
  40. if prompt_file is not None:
  41. assert os.path.exists(
  42. prompt_file
  43. ), f"Provided Prompt file does not exist {prompt_file}"
  44. with open(prompt_file, "r") as f:
  45. user_prompt = "\n".join(f.readlines())
  46. elif not sys.stdin.isatty():
  47. user_prompt = "\n".join(sys.stdin.readlines())
  48. else:
  49. print("No user prompt provided. Exiting.")
  50. sys.exit(1)
  51. # Set the seeds for reproducibility
  52. torch.cuda.manual_seed(seed)
  53. torch.manual_seed(seed)
  54. # model = load_model(model_name, quantization)
  55. model_def = load_llama_from_config()
  56. # print(dir(model_def))
  57. # model_def.eval()
  58. model = load_sharded_model_single_gpu(model_def, model_name)
  59. model.to(torch.bfloat16)
  60. model.to("cuda:0")
  61. print("model has been loaded *******************")
  62. tokenizer = LlamaTokenizer.from_pretrained("../../../hf-llama-pr/7B/")
  63. tokenizer.add_special_tokens(
  64. {
  65. "eos_token": "</s>",
  66. "bos_token": "</s>",
  67. "unk_token": "</s>",
  68. "pad_token": "[PAD]",
  69. }
  70. )
  71. safety_checker = get_safety_checker(enable_azure_content_safety,
  72. enable_sensitive_topics,
  73. enable_saleforce_content_safety,
  74. )
  75. # Safety check of the user prompt
  76. safety_results = [check(user_prompt) for check in safety_checker]
  77. are_safe = all([r[1] for r in safety_results])
  78. if are_safe:
  79. print("User prompt deemed safe.")
  80. print(f"User prompt:\n{user_prompt}")
  81. else:
  82. print("User prompt deemed unsafe.")
  83. for method, is_safe, report in safety_results:
  84. if not is_safe:
  85. print(method)
  86. print(report)
  87. print("Skipping the inferece as the prompt is not safe.")
  88. sys.exit(1) # Exit the program with an error status
  89. if peft_model:
  90. model = load_peft_model(model, peft_model)
  91. # model.eval()
  92. batch = tokenizer(user_prompt, return_tensors="pt")
  93. batch = {k: v.to("cuda") for k, v in batch.items()}
  94. with torch.no_grad():
  95. outputs = model.generate(
  96. **batch,
  97. max_new_tokens=max_new_tokens,
  98. do_sample=do_sample,
  99. top_p=top_p,
  100. temperature=temperature,
  101. min_length=min_length,
  102. use_cache=use_cache,
  103. top_k=top_k,
  104. repetition_penalty=repetition_penalty,
  105. length_penalty=length_penalty,
  106. **kwargs
  107. )
  108. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  109. # Safety check of the model output
  110. safety_results = [check(output_text) for check in safety_checker]
  111. are_safe = all([r[1] for r in safety_results])
  112. if are_safe:
  113. print("User input and model output deemed safe.")
  114. print(f"Model output:\n{output_text}")
  115. else:
  116. print("Model output deemed unsafe.")
  117. for method, is_safe, report in safety_results:
  118. if not is_safe:
  119. print(method)
  120. print(report)
  121. if __name__ == "__main__":
  122. fire.Fire(main)