| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 | import matplotlib.pyplot as pltimport pandas as pdimport plotly.graph_objects as gofrom utils import fetch_github_endpointimport logginglogger = logging.getLogger(__name__)logger.addHandler(logging.StreamHandler())def plot_views_clones(repo_name, out_folder):    def json_to_df(json_data, key):        df = pd.DataFrame(json_data[key])        df['timestamp'] = df['timestamp'].apply(lambda x: x[5:10])        if key in ['clones', 'views']:            df.rename(columns={'uniques': key}, inplace=True)            df.drop(columns=['count'], inplace=True)        return df    unique_clones_2w = fetch_github_endpoint(f"https://api.github.com/repos/{repo_name}/traffic/clones").json()    unique_views_2w = fetch_github_endpoint(f"https://api.github.com/repos/{repo_name}/traffic/views").json()    df1 = json_to_df(unique_clones_2w, 'clones')    df2 = json_to_df(unique_views_2w, 'views')    df = df1.merge(df2, on='timestamp', how='inner')    fig, ax1 = plt.subplots(figsize=(10, 6))    ax1.plot(df['timestamp'], df['views'], color='blue')    ax1.set_xlabel('Day', fontsize=18)    ax1.set_ylabel('Unique Views', color='blue', fontsize=18)    ax1.tick_params(axis='y', labelcolor='blue')    ax2 = ax1.twinx()    ax2.bar(df['timestamp'], df['clones'], color='red')    ax2.set_ylabel('Unique Clones', color='red', fontsize=18)    ax2.tick_params(axis='y', labelcolor='red')    plt.title('Views & Clones in the last 2 weeks', fontsize=24)    plt.savefig(f'{out_folder}/views_clones.png', dpi=120)      plt.close()def plot_high_traffic_resources(repo_name, out_folder):    popular_paths_2w = fetch_github_endpoint(f"https://api.github.com/repos/{repo_name}/traffic/popular/paths").json()    df = pd.DataFrame(popular_paths_2w)    df['path'] = df['path'].apply(lambda x: '/'.join(x.split('/')[-2:]))    df = df.sort_values(by='uniques', ascending=False).head(10)    plt.figure(figsize=(10, 6))    plt.barh(df['path'], df['uniques'])    plt.xlabel('Unique traffic in the last 2 weeks', fontsize=18)    # plt.ylabel('Resource', fontsize=18, labelpad=15)    plt.title("Popular Resources on the Repository", fontsize=24)    plt.tight_layout()    plt.savefig(f'{out_folder}/resources.png', dpi=120)    plt.close()    def plot_high_traffic_referrers(repo_name, out_folder):    popular_referrer_2w = fetch_github_endpoint(f"https://api.github.com/repos/{repo_name}/traffic/popular/referrers").json()    df = pd.DataFrame(popular_referrer_2w)    df = df.sort_values(by='uniques', ascending=False)    plt.figure(figsize=(10, 6))    plt.barh(df['referrer'], df['uniques'])    plt.xlabel('Unique traffic in the last 2 weeks', fontsize=18)    plt.ylabel('Referrer', fontsize=18)    plt.title("Popular Referrers to the Repository", fontsize=24)    plt.savefig(f'{out_folder}/referrers.png', dpi=120)    plt.close()def plot_commit_activity(repo_name, out_folder):    limit = 10    today = pd.to_datetime('today')    weekly_commit_count_52w = fetch_github_endpoint(f"https://api.github.com/repos/{repo_name}/stats/participation").json()['all'][-limit:]    timestamps = [(today - pd.Timedelta(days=7*(i+1))) for i in range(limit)]    df = pd.DataFrame({'timestamp': timestamps, 'commit_count': weekly_commit_count_52w})    plt.figure(figsize=(10, 6))    plt.bar(df['timestamp'], df['commit_count'])    plt.xlabel('Week', fontsize=18)    plt.ylabel('Commit Count', fontsize=18)    plt.title(f"Commits in the last {limit} weeks", fontsize=24)    plt.savefig(f'{out_folder}/commits.png', dpi=120)    plt.close()def plot_user_expertise(df, out_folder):    d = df.to_dict('records')[0]    levels = ['Beginner', 'Intermediate', 'Advanced']    keys = [f"op_expertise_count_{x.lower()}" for x in levels]    data = pd.DataFrame({'Expertise': levels, 'Count': [d.get(k, 0) for k in keys]})    plt.figure(figsize=(10, 6))    plt.barh(data['Expertise'], data['Count'])    plt.xlabel('Count', fontsize=18)    plt.title('User Expertise', fontsize=24)    plt.savefig(f'{out_folder}/expertise.png', dpi=120)    plt.close()def plot_severity(df, out_folder):    d = df.to_dict('records')[0]    levels = ['Trivial', 'Minor', "Major", 'Critical']    keys = [f"severity_count_{x.lower()}" for x in levels]    data = pd.DataFrame({'Severity': levels, 'Count': [d.get(k, 0) for k in keys]})    plt.figure(figsize=(10, 6))    plt.barh(data['Severity'], data['Count'])    plt.xlabel('Count', fontsize=18)    plt.title('Severity', fontsize=24)    plt.savefig(f'{out_folder}/severity.png', dpi=120)    plt.close()def plot_sentiment(df, out_folder):    d = df.to_dict('records')[0]    levels = ['Positive', 'Neutral', 'Negative']    keys = [f"sentiment_count_{x.lower()}" for x in levels]    data = pd.DataFrame({'Sentiment': levels, 'Count': [d.get(k, 0) for k in keys]})    plt.figure(figsize=(10, 6))    plt.barh(data['Sentiment'], data['Count'])    plt.xlabel('Count', fontsize=18)    plt.title('Sentiment', fontsize=24)    plt.savefig(f'{out_folder}/sentiment.png', dpi=120)    plt.close()        def plot_themes(df, out_folder):    d = df.to_dict('records')[0]    levels = ['Documentation', 'Installation and Environment', 'Model Inference', 'Model Fine Tuning and Training', 'Model Evaluation and Benchmarking', 'Model Conversion', 'Cloud Compute', 'CUDA Compatibility', 'Distributed Training and Multi-GPU', 'Invalid', 'Miscellaneous']    keys = [f'themes_count_{x.lower().replace(" ", "_").replace("-", "_")}' for x in levels]    data = pd.DataFrame({'Theme': levels, 'Count': [d.get(k, 0) for k in keys]})    plt.figure(figsize=(10, 6))    plt.barh(data['Theme'], data['Count'])    plt.xlabel('Count', fontsize=18)    plt.title('Themes', fontsize=24)    plt.tight_layout()    plt.savefig(f'{out_folder}/themes.png', dpi=120)    plt.close()  def issue_activity_sankey(df, out_folder):        d = df.to_dict('records')[0]    label = ["New Issues", "Issues Under Discussion", "Issues Discussed and Closed", "Issues Not Responded to", "Issues Closed Without Discussion"]    values = [        d['issues_created'],         d['open_discussion'] + d['closed_discussion'],  # 7        d['closed_discussion'], # 3        d['open_no_discussion'] + d['closed_no_discussion'],        d['closed_no_discussion']     ]    fig = go.Figure(data=[go.Sankey(        node = dict(        pad = 15,        thickness = 20,        line = dict(color = "black", width = 0.5),        label = [f"{l} ({values[i]})" for i, l in enumerate(label)],        color = ["#007bff", "#17a2b8", "#6610f2", "#dc3545", "#6c757d"]  # color scheme to highlight different flows        ),        link = dict(        source = [0, 1, 0, 3], # indices correspond to labels, eg A1, A2, etc        target = [1, 2, 3, 4],        value = [v if v > 0 else 1e-9 for v in values[1:]]    ))])    fig.update_layout(title_text="Issue Flow", font_size=16)    fig.update_layout(margin=dict(l=20, r=20, t=60, b=20))  # adjust margins to make text more visible    fig.write_image(f"{out_folder}/engagement_sankey.png")def draw_all_plots(repo_name, out_folder, overview):    func1 = [plot_views_clones, plot_high_traffic_resources, plot_high_traffic_referrers, plot_commit_activity]    func2 = [plot_user_expertise, plot_severity, plot_sentiment, plot_themes, issue_activity_sankey]    logger.info("Plotting traffic trends...")    for func in func1:        try:            func(repo_name, out_folder)        except:            print(f"Github fetch failed for {func}. Make sure you have push-access to {repo_name}!")    logger.info("Plotting issue trends...")    for func in func2:        func(overview, out_folder)    
 |