|
|
пре 3 месеци | |
|---|---|---|
| .. | ||
| data | пре 4 месеци | |
| eval | пре 3 месеци | |
| fine-tuning | пре 3 месеци | |
| quickstart | пре 3 месеци | |
| README.md | пре 3 месеци | |
This recipe is step by step guide to improve Llama performance on Text2SQL measured with the popular BIRD benchmark. We generate a synthetic Chain of Thought(CoT) dataset and fine-tune Llama models on it.
Results: |-----------------------------|-------------------------------| | baseline | 39.47% | | CoT, PEFT | 43.35% | | CoT, FFT | 42.44% (3 epochs) | | CoT, FFT | 43.87% (10 epochs) |
The complete steps are:
Pre-processing the BIRD TRAIN datset by converting SQL statements into the conversation format.
We use the conversations from step 1, add CoT to these existing conversations using Llama-3.3-70B.
Fine-tuning Llama-3.1-8B on the dataset from step 2.
We provide scripts to simplify running the BIRD eval benchmark on the fine-tuned models and compare it with out of the model.
We also experimented with supervised fine-tuning (SFT) without CoT which resulted in slightly lower accuracy.