|
|
3 тижнів тому | |
|---|---|---|
| .. | ||
| grpo | 3 тижнів тому | |
| README.md | 2 місяців тому | |
| create_reasoning_dataset.py | 3 місяців тому | |
| create_sft_dataset.py | 3 місяців тому | |
| merge_peft.py | 3 місяців тому | |
| requirements.txt | 3 місяців тому | |
| train_loss.png | 3 місяців тому | |
| train_loss_cot.png | 3 місяців тому | |
| trl_sft.py | 3 місяців тому | |
This folder contains scripts to:
Note: CoT stands for Chain of Thought and we will use "CoT" and "reasoning" interchangeably here, although generally, reasoning encompasses a broader concept than CoT.
The eval results of SFT Llama 3.1 8B with different options (epochs is 3, with an additional 10 for the two FFT models) are summarized below:
| Fine-tuning Combination | Accuracy |
|---|---|
| baseline | 39.47% |
| CoT, PEFT | 43.35% |
| CoT, FFT | 42.44% (3 epochs) |
| CoT, FFT | 43.87% (10 epochs) |
Using Quantization+PEFT on CoT dataset only dropped the accuracy from 43.35% to 42.89%.
cd llama-cookbook/end-to-end-use-cases/coding/text2sql/fine-tuning
pip install -r requirements.txt
Otherwise, run the commands below to create a new Conda environment and install all the required packages for Text2SQL evaluation and fine-tuning:
conda create -n llama-text2sql python=3.10
conda activate llama-text2sql
git clone https://github.com/meta-llama/llama-cookbook
git checkout text2sql # to be removed after the PR merge
cd llama-cookbook/end-to-end-use-cases/coding/text2sql/fine-tuning
pip install -r requirements.txt
cd ../data
sh download_train_unzip.sh
cd ../fine-tuning
python create_reasoning_dataset.py --input_json ../data/train/train.json --db_root_path ../data/train/train_databases
See the section "About Creating the CoT Dataset" below for more details.
python trl_sft.py --quantized false --peft false --cot true
python trl_sft.py --quantized false --peft true --cot true
python trl_sft.py --quantized true --peft true --cot true
See the section "About fine-tuning" below for more details.
model value in llama_eval.sh to be one of the fine-tuned model folders above, e.g.YOUR_API_KEY='finetuned'
model='fine_tuning/llama31-8b-text2sql-fft-nonquantized-cot'
vllm serve fine_tuning/llama31-8b-text2sql-fft-nonquantized-cot --tensor-parallel-size 1 --max-num-batched-tokens 8192 --max-num-seqs 64
or if you want to speed up the inference and eval and have multiple GPUs, you can set --tensor-parallel-size to the number of your available GPUs, e.g.:vllm serve fine_tuning/llama31-8b-text2sql-fft-nonquantized-cot --tensor-parallel-size 8 --max-num-batched-tokens 8192 --max-num-seqs 64
cd ../data
sh download_dev_unzip.sh
cd ../eval
Then run sh llama_eval.sh.
Note: If your fine-tuned model is PEFT based, you may need to run python merge_peft.py after modifying its peft_model_path and output_dir and set the merged folder path after vllm serve.
We use the BIRD TRAIN dataset to prepare for supervised fine-tuning with reasoning info in the dataset. The goal is to see if we can improve the accuracy of the fine-tuned model by adding the reasoning info in the dataset.
The script create_reasoning_dataset.py is used to create a reasoning dataset from the TRAIN dataset by asking Llama 3.3 70B to generate the reasoning for each text question and its corresponding gold SQL. The intent is to use the reasoning dataset to fine-tune the Llama model to improve the accuracy of the generated SQL.
To run the script, use the following command:
python create_reasoning_dataset.py --input_json ../data/train/train.json --db_root_path ../data/train/train_databases
This will create a text2sql_cot_dataset dataset and train_text2sql_cot_dataset.json in the conversation format ready for fine-tuning. Each example in the dataset is generated from the code snippet below:
prompt = f"""
-- DB Schema: {db_schema}
-- External Knowledge: {external_knowledge}
-- Text Question: {question}
"""
cot = {
"messages": [
{
"role": "system",
"content": "You are a text to SQL query translator. Using the SQLite DB Schema and the External Knowledge, generate the step-by-step reasoning and the final SQLite SQL select statement from the text question.",
},
{"role": "user", "content": prompt},
{"role": "assistant", "content": reasoning},
]
}
The prompt for Llama 3.3 70B to generate the reasoning above is:
You are a text to SQL query translator. Based on the DB Schema and External Knowledge, given the Text Question Input and its Gold SQL Output below, generate the step-by-step reasoning to infer the Gold SQL Output from the Text Question Input.
-- DB Schema: {db_schema}
-- External Knowledge: {external_knowledge}
-- Text Question Input: {question}
-- Gold SQL Output: {gold_SQL}
Your response should be as follows:\n\n
Let me think through this step by step:\n\n1. First, I need to consider...\n2. Then...\n3. Next...\n...\n\nFinally, the SQL statement for the text question is:
```sql ...```\n
"""
Run one of the commands below:
python trl_sft.py --quantized false --peft false --cot true
python trl_sft.py --quantized false --peft true --cot true
python trl_sft.py --quantized true --peft true --cot true
After the fine-tuning completes, you'll see the fine-tuned model saved in one of the following folders, as specified in output_dir of SFTConfig in trl_sft.py:
llama31-8b-text2sql-fft-nonquantized-cot
llama31-8b-text2sql-peft-nonquantized-cot
llama31-8b-text2sql-peft-quantized-cot
The train loss chart should look like this:

If you have 8xH100 GPUs, you can use torchtune to fine-tune Llama 3.3 70B and then evaluate the fine-tuned model. Note that "active development on torchtune" has been stopped (detail), but "Torchtune will continue to receive critical bug fixes and security patches during 2025", so here we just show torchtune as a method to fine-tune the larger Llama 3.3 70B on multiple GPUs.
pip install torch torchvision torchao
pip install torchtune
tune download meta-llama/Llama-3.3-70B-Instruct --ignore-patterns "original/consolidated*" --output-dir /tmp/Llama-3.3-70B-Instruct
git clone https://github.com/pytorch/torchtune
cd torchtune/tree/main/recipes/configs
Modify llama3_3/70B_lora.yaml as follows:
output_dir: /tmp/torchtune/llama3_3_70B/lora
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.chat_dataset
source: json
conversation_column: messages
conversation_style: openai
data_files: train_text2sql_cot_dataset_array.json
#split: train
seed: null
shuffle: True
# Validation
run_val_every_n_steps: null # Change to an integer to enable validation every N steps
dataset_val:
_component_: torchtune.datasets.chat_dataset
source: json
conversation_column: messages
conversation_style: openai
data_files: test_text2sql_cot_dataset_array.json
#split: validation
batch_size_val: ${batch_size}
Then run:
tune run --nproc_per_node 8 lora_finetune_distributed --config llama3_3/70B_lora
After the fine-tuning is done, cd to text2sql/fine-tuning folder, set peft_model_path as /tmp/torchtune/llama3_3_70B/lora and output_dir as llama3_3_70B/lora, then run vllm serve llama3_3_70B/lora --tensor-parallel-size 8 --max-num-batched-tokens 8192 --max-num-seqs 64.
Finally, in the eval/llama_eval.sh, set model='llama3_3_70B/lora', and run sh llama_eval.sh. The accuracy of the fine-tuned Llama 3.3 70B should be around 57.24%, compared with the original 54.11% for off-the-shelf Llama 3.3 70B as shown in the eval README.