| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- import os
 
- import sys
 
- import time
 
- import fire
 
- import torch
 
- from accelerate.utils import is_xpu_available
 
- from llama_cookbook.inference.model_utils import load_model, load_peft_model
 
- from llama_cookbook.inference.safety_utils import AgentType, get_safety_checker
 
- from transformers import AutoTokenizer
 
- def main(
 
-     model_name,
 
-     peft_model: str = None,
 
-     quantization: str = None, # Options: 4bit, 8bit
 
-     max_new_tokens=100,  # The maximum numbers of tokens to generate
 
-     prompt_file: str = None,
 
-     seed: int = 42,  # seed value for reproducibility
 
-     do_sample: bool = True,  # Whether or not to use sampling ; use greedy decoding otherwise.
 
-     min_length: int = None,  # The minimum length of the sequence to be generated, input prompt + min_new_tokens
 
-     use_cache: bool = True,  # [optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
 
-     top_p: float = 1.0,  # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
 
-     temperature: float = 1.0,  # [optional] The value used to modulate the next token probabilities.
 
-     top_k: int = 50,  # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
 
-     repetition_penalty: float = 1.0,  # The parameter for repetition penalty. 1.0 means no penalty.
 
-     length_penalty: int = 1,  # [optional] Exponential penalty to the length that is used with beam-based generation.
 
-     enable_azure_content_safety: bool = False,  # Enable safety check with Azure content safety api
 
-     enable_sensitive_topics: bool = False,  # Enable check for sensitive topics using AuditNLG APIs
 
-     enable_salesforce_content_safety: bool = True,  # Enable safety check with Salesforce safety flan t5
 
-     enable_llamaguard_content_safety: bool = False,
 
-     max_padding_length: int = None,  # the max padding length to be used with tokenizer padding the prompts.
 
-     use_fast_kernels: bool = False,  # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
 
-     share_gradio: bool = False,  # Enable endpoint creation for gradio.live
 
-     **kwargs,
 
- ):
 
-     # Set the seeds for reproducibility
 
-     if is_xpu_available():
 
-         torch.xpu.manual_seed(seed)
 
-     else:
 
-         torch.cuda.manual_seed(seed)
 
-     torch.manual_seed(seed)
 
-     model = load_model(model_name, quantization, use_fast_kernels, **kwargs)
 
-     if peft_model:
 
-         model = load_peft_model(model, peft_model)
 
-     model.eval()
 
-     tokenizer = AutoTokenizer.from_pretrained(model_name)
 
-     tokenizer.pad_token = tokenizer.eos_token
 
-     def inference(
 
-         user_prompt,
 
-         temperature,
 
-         top_p,
 
-         top_k,
 
-         max_new_tokens,
 
-         **kwargs,
 
-     ):
 
-         safety_checker = get_safety_checker(
 
-             enable_azure_content_safety,
 
-             enable_sensitive_topics,
 
-             enable_salesforce_content_safety,
 
-             enable_llamaguard_content_safety,
 
-         )
 
-         # Safety check of the user prompt
 
-         safety_results = [check(user_prompt) for check in safety_checker]
 
-         are_safe = all([r[1] for r in safety_results])
 
-         if are_safe:
 
-             print("User prompt deemed safe.")
 
-             print(f"User prompt:\n{user_prompt}")
 
-         else:
 
-             print("User prompt deemed unsafe.")
 
-             for method, is_safe, report in safety_results:
 
-                 if not is_safe:
 
-                     print(method)
 
-                     print(report)
 
-             print("Skipping the inference as the prompt is not safe.")
 
-             return  # Exit the program with an error status
 
-         batch = tokenizer(
 
-             user_prompt,
 
-             truncation=True,
 
-             max_length=max_padding_length,
 
-             return_tensors="pt",
 
-         )
 
-         if is_xpu_available():
 
-             batch = {k: v.to("xpu") for k, v in batch.items()}
 
-         else:
 
-             batch = {k: v.to("cuda") for k, v in batch.items()}
 
-         start = time.perf_counter()
 
-         with torch.no_grad():
 
-             outputs = model.generate(
 
-                 **batch,
 
-                 max_new_tokens=max_new_tokens,
 
-                 do_sample=do_sample,
 
-                 top_p=top_p,
 
-                 temperature=temperature,
 
-                 min_length=min_length,
 
-                 use_cache=use_cache,
 
-                 top_k=top_k,
 
-                 repetition_penalty=repetition_penalty,
 
-                 length_penalty=length_penalty,
 
-                 **kwargs,
 
-             )
 
-         e2e_inference_time = (time.perf_counter() - start) * 1000
 
-         print(f"the inference time is {e2e_inference_time} ms")
 
-         output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
-         # Safety check of the model output
 
-         safety_results = [
 
-             check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt)
 
-             for check in safety_checker
 
-         ]
 
-         are_safe = all([r[1] for r in safety_results])
 
-         if are_safe:
 
-             print("User input and model output deemed safe.")
 
-             print(f"Model output:\n{output_text}")
 
-             return output_text
 
-         else:
 
-             print("Model output deemed unsafe.")
 
-             for method, is_safe, report in safety_results:
 
-                 if not is_safe:
 
-                     print(method)
 
-                     print(report)
 
-             return None
 
-     if prompt_file is not None:
 
-         assert os.path.exists(
 
-             prompt_file
 
-         ), f"Provided Prompt file does not exist {prompt_file}"
 
-         with open(prompt_file, "r") as f:
 
-             user_prompt = "\n".join(f.readlines())
 
-         inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
 
-     elif not sys.stdin.isatty():
 
-         user_prompt = "\n".join(sys.stdin.readlines())
 
-         inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
 
-     else:
 
-         try:
 
-             import gradio as gr
 
-         except ImportError:
 
-             raise ImportError("This part of the recipe requires gradio. Please run `pip install gradio`")
 
-             
 
-         gr.Interface(
 
-             fn=inference,
 
-             inputs=[
 
-                 gr.components.Textbox(
 
-                     lines=9,
 
-                     label="User Prompt",
 
-                     placeholder="none",
 
-                 ),
 
-                 gr.components.Slider(
 
-                     minimum=0, maximum=1, value=1.0, label="Temperature"
 
-                 ),
 
-                 gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Top p"),
 
-                 gr.components.Slider(
 
-                     minimum=0, maximum=100, step=1, value=50, label="Top k"
 
-                 ),
 
-                 gr.components.Slider(
 
-                     minimum=1, maximum=2000, step=1, value=200, label="Max tokens"
 
-                 ),
 
-             ],
 
-             outputs=[
 
-                 gr.components.Textbox(
 
-                     lines=5,
 
-                     label="Output",
 
-                 )
 
-             ],
 
-             title="Meta Llama3 Playground",
 
-             description="https://github.com/meta-llama/llama-cookbook",
 
-         ).queue().launch(server_name="0.0.0.0", share=share_gradio)
 
- if __name__ == "__main__":
 
-     fire.Fire(main)
 
 
  |