123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import os
- import sys
- import time
- import fire
- import torch
- from accelerate.utils import is_xpu_available
- from llama_recipes.inference.model_utils import load_model, load_peft_model
- from llama_recipes.inference.safety_utils import AgentType, get_safety_checker
- from transformers import AutoTokenizer
- def main(
- model_name,
- peft_model: str = None,
- quantization: str = None, # Options: 4bit, 8bit
- max_new_tokens=100, # The maximum numbers of tokens to generate
- prompt_file: str = None,
- seed: int = 42, # seed value for reproducibility
- do_sample: bool = True, # Whether or not to use sampling ; use greedy decoding otherwise.
- min_length: int = None, # The minimum length of the sequence to be generated, input prompt + min_new_tokens
- use_cache: bool = True, # [optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
- top_p: float = 1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
- temperature: float = 1.0, # [optional] The value used to modulate the next token probabilities.
- top_k: int = 50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
- repetition_penalty: float = 1.0, # The parameter for repetition penalty. 1.0 means no penalty.
- length_penalty: int = 1, # [optional] Exponential penalty to the length that is used with beam-based generation.
- enable_azure_content_safety: bool = False, # Enable safety check with Azure content safety api
- enable_sensitive_topics: bool = False, # Enable check for sensitive topics using AuditNLG APIs
- enable_salesforce_content_safety: bool = True, # Enable safety check with Salesforce safety flan t5
- enable_llamaguard_content_safety: bool = False,
- max_padding_length: int = None, # the max padding length to be used with tokenizer padding the prompts.
- use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
- share_gradio: bool = False, # Enable endpoint creation for gradio.live
- **kwargs,
- ):
- # Set the seeds for reproducibility
- if is_xpu_available():
- torch.xpu.manual_seed(seed)
- else:
- torch.cuda.manual_seed(seed)
- torch.manual_seed(seed)
- model = load_model(model_name, quantization, use_fast_kernels, **kwargs)
- if peft_model:
- model = load_peft_model(model, peft_model)
- model.eval()
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- tokenizer.pad_token = tokenizer.eos_token
- def inference(
- user_prompt,
- temperature,
- top_p,
- top_k,
- max_new_tokens,
- **kwargs,
- ):
- safety_checker = get_safety_checker(
- enable_azure_content_safety,
- enable_sensitive_topics,
- enable_salesforce_content_safety,
- enable_llamaguard_content_safety,
- )
- # Safety check of the user prompt
- safety_results = [check(user_prompt) for check in safety_checker]
- are_safe = all([r[1] for r in safety_results])
- if are_safe:
- print("User prompt deemed safe.")
- print(f"User prompt:\n{user_prompt}")
- else:
- print("User prompt deemed unsafe.")
- for method, is_safe, report in safety_results:
- if not is_safe:
- print(method)
- print(report)
- print("Skipping the inference as the prompt is not safe.")
- return # Exit the program with an error status
- batch = tokenizer(
- user_prompt,
- truncation=True,
- max_length=max_padding_length,
- return_tensors="pt",
- )
- if is_xpu_available():
- batch = {k: v.to("xpu") for k, v in batch.items()}
- else:
- batch = {k: v.to("cuda") for k, v in batch.items()}
- start = time.perf_counter()
- with torch.no_grad():
- outputs = model.generate(
- **batch,
- max_new_tokens=max_new_tokens,
- do_sample=do_sample,
- top_p=top_p,
- temperature=temperature,
- min_length=min_length,
- use_cache=use_cache,
- top_k=top_k,
- repetition_penalty=repetition_penalty,
- length_penalty=length_penalty,
- **kwargs,
- )
- e2e_inference_time = (time.perf_counter() - start) * 1000
- print(f"the inference time is {e2e_inference_time} ms")
- output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
- # Safety check of the model output
- safety_results = [
- check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt)
- for check in safety_checker
- ]
- are_safe = all([r[1] for r in safety_results])
- if are_safe:
- print("User input and model output deemed safe.")
- print(f"Model output:\n{output_text}")
- return output_text
- else:
- print("Model output deemed unsafe.")
- for method, is_safe, report in safety_results:
- if not is_safe:
- print(method)
- print(report)
- return None
- if prompt_file is not None:
- assert os.path.exists(
- prompt_file
- ), f"Provided Prompt file does not exist {prompt_file}"
- with open(prompt_file, "r") as f:
- user_prompt = "\n".join(f.readlines())
- inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
- elif not sys.stdin.isatty():
- user_prompt = "\n".join(sys.stdin.readlines())
- inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
- else:
- try:
- import gradio as gr
- except ImportError:
- raise ImportError("This part of the recipe requires gradio. Please run `pip install gradio`")
-
- gr.Interface(
- fn=inference,
- inputs=[
- gr.components.Textbox(
- lines=9,
- label="User Prompt",
- placeholder="none",
- ),
- gr.components.Slider(
- minimum=0, maximum=1, value=1.0, label="Temperature"
- ),
- gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Top p"),
- gr.components.Slider(
- minimum=0, maximum=100, step=1, value=50, label="Top k"
- ),
- gr.components.Slider(
- minimum=1, maximum=2000, step=1, value=200, label="Max tokens"
- ),
- ],
- outputs=[
- gr.components.Textbox(
- lines=5,
- label="Output",
- )
- ],
- title="Meta Llama3 Playground",
- description="https://github.com/meta-llama/llama-recipes",
- ).queue().launch(server_name="0.0.0.0", share=share_gradio)
- if __name__ == "__main__":
- fire.Fire(main)
|